精英家教网 > 高中数学 > 题目详情
坐标系与参数方程 
已知椭圆C:
x2
16
+
y2
9
=1
与x正半轴、y正半轴的交点分别为A,B,动点P是椭圆上任一点,求△PAB面积的最大值.
分析:根据椭圆的方程算出A(4,0)、B(0,3),从而得到|AB|=5且直线AB:3x+4y-12=0.设点P(4cosθ,3sinθ),由点到直线的距离公式算出P到直线AB距离为d=
12
5
|
2
sin(θ+
π
4
)-1|,结合三角函数的图象与性质算出dmax=
2
+1
,由此结合三角形面积公式,即可得到△PAB面积的最大值.
解答:解:∵椭圆C方程为:
x2
16
+
y2
9
=1

∴椭圆与x正半轴交于点A(4,0),与y正半轴的交于点B(0,3),
∵P是椭圆上任一个动点,设点P(4cosθ,3sinθ)(θ∈[0,2π])
∴点P到直线AB:3x+4y-12=0的距离为
d=
|12cosθ+12sinθ-12|
32+42
=
12
5
|
2
sin(θ+
π
4
)-1|
由此可得:当θ=
4
时,dmax=
12
5
2
+1

∴△PAB面积的最大值为S=
1
2
|AB|×dmax=6(
2
+1
点评:本题给出椭圆的右顶点为A、上顶点为B,求椭圆上动点P与AB构成三角形的面积最大值,着重考查了椭圆的标准方程、参数方程,点到直线的距离和三角函数的图象与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选做题)选修4-4:坐标系与参数方程
已知半圆C的参数方程C:
x=cosθ
y=sinθ
θ为参数且(0≤θ≤π),P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与
AP
的长度均为
π
3
.?
(1)求以O为极点,x轴为正半轴为极轴建立极坐标系求点M的极坐标.
(2)求直线AM的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•文昌模拟)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程
x=1+
t
2
y=2+
3
2
t
(t为参数)

(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换
x′=3x
y′=y
得到曲线C′,设曲线C′上任一点为M(x,y),求x+2
3
y
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-4:坐标系与参数方程已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2
2
ρcos(θ-
π
4
)=2.
(Ⅰ)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(Ⅱ)求经过两圆交点的直线的极坐标方程.
(2)选修4-5:不等式选讲,设x+2y+3z=3,求4x2+5y2+6z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)选修4-4:坐标系与参数方程
已知:直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),曲线C的参数方程为
x=2+cosθ
y=sinθ
(θ为参数).
(1)若在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
3
),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求点Q到直线l的距离的最大值与最小值的差.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4  坐标系与参数方程
已知曲线C的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设(x,y)是曲线C上任意一点,求
y
x
的最大、最小值.

查看答案和解析>>

同步练习册答案