精英家教网 > 高中数学 > 题目详情
13.“a3>b3”是“lna>lnb”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据充分必要条件的定义判断即可.

解答 解:a3>b3”等价于a>b,
而“lna>lnb”等价于a>b>0,
故“a3>b3”是“lna>lnb”的必要不充分条件,
故选:B.

点评 本题考查了充分必要条件,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.直线3x+4y-4=0与圆x2+y2+6x-4y=0相交所得弦的长为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若tanα=3tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(0,2),抛物线C:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,MK垂直准线于点K,若|KM|:|MN|=1:$\sqrt{5}$,则a的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x$-\frac{1}{2}$.
(1)求f(x)的最小值,并写出取得最小值时的自变量x的集合.
(2)设△ABC的内角A,B,C所对的边分别为a,b,c,且c=$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC的三内角A、B、C所对的边分别是a、b、c,设向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(sinB,sinA),若$\overrightarrow{m}$$∥\overrightarrow{n}$,且满足(2a-c)cosB=bcosC,则△ABC的形状是(  )
A.等腰直角三角形B.钝角三角形C.等边三角形D.直角三角形,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),的左右焦点,离心率为$\frac{\sqrt{2}}{2}$,M为椭圆上的动点,|MF1|的最大值为1$+\sqrt{2}$.
(Ⅰ)求椭圆C的方程.
(Ⅱ)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P,求证:|PF1|+|PF2|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=g(x)+x2,对于任意x∈R总有f(-x)+f(x)=0,且g(-1)=1,则g(1)=(  )
A.-1B.1C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{a•{2}^{x}+b+1}{{2}^{x}+1}$是定义域在R上的奇函数,且f(2)=$\frac{6}{5}$.
(1)求实数a、b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)解不等式:f(log${\;}_{\frac{1}{2}}$(2x-2)]+f[log2(1-$\frac{1}{2}$x)]≥0.

查看答案和解析>>

同步练习册答案