精英家教网 > 高中数学 > 题目详情

【题目】椭圆的两个焦点,设分别是椭圆的上、下顶点,且四边形的面积为,其内切圆周长为.

(1)求椭圆的方程;

(2)当时,为椭圆上的动点,且,试问:直线是否恒过一定点?若是,求出此定点坐标,若不是,请说明理由.

【答案】(1);(2)恒过定点.

【解析】

1)根据条件,求出bc的值,从而求出椭圆的方程;

2设直线方程为,联立直线和椭圆的方程,利用韦达定理及,求出m,可得直线恒过定点

(1)依题意,四边形的面积为

,即

又四边形的内切圆周长为,记内切圆半径为

,得

,且

所以椭圆的方程为.

(2)因为,所以椭圆的方程为,则

,由题意知直线斜率存在,设直线方程为

则由

Δ

,可得,即

,又

所以

整理得

解得(舍去)或

满足

故直线方程为

所以直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,点在以为直径的圆上,平面平面,点在线段上,且,点的重心,点的中点.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点,上顶点为为椭圆上任意一点,且的面积最大值为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若点.为椭圆上的两个不同的动点,且为坐标原点),则是否存在常数,使得点到直线的距离为定值?若存在,求出常数和这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,在上存在两点满足,且点轴上方,以为切点作的切线与该抛物线的准线相交于,则的坐标为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右焦点,点在直线上且不在轴上,直线与椭圆的交点分别为为坐标原点.

设直线的斜率为,证明:

问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知点A(2,0)B(2,0),动点M(x,y)满足直线AMBM的斜率之积为.M的轨迹为曲线C.

1)求C的方程,并说明C是什么曲线;

2)过坐标原点的直线交CPQ两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.

i)证明:是直角三角形;

ii)求面积的最大值.

(二)选考题:共10请考生在第2223题中任选一题作答。如果多做,则按所做的第一题计分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点P的轨迹对应曲线C的标准方程;

2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正四棱锥可绕着任意旋转,平面.,则正四棱锥在面内的投影面积的取值范围是_______.

查看答案和解析>>

同步练习册答案