精英家教网 > 高中数学 > 题目详情
7.求下列函数的值域:
(1)y=cos2x+2sinx-2;
(2)y=cos2x-sinx,x∈[-$\frac{π}{4}$,$\frac{π}{4}$].

分析 由条件利用同角三角函数的基本关系化简函数的解析式,再利用正弦函数的定义域和值域,二次函数的性质,求得它的最值.

解答 解:(1)∵y=cos2x+2sinx-2=-sin2x+2sinx-1=-(sinx-1)2,-1≤sinx≤1,
故y∈[-4,0].
(2)∵y=cos2x-sinx=-sin2x-sinx+1=-${(sinx+\frac{1}{2})}^{2}$+$\frac{5}{4}$,x∈[-$\frac{π}{4}$,$\frac{π}{4}$],
∴sinx∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$],
故当sinx=-$\frac{1}{2}$时,函数取得最大值为$\frac{5}{4}$,当sinx=$\frac{\sqrt{2}}{2}$时,函数取得最小值为$\frac{2-2\sqrt{2}}{4}$.

点评 本题主要考查同角三角函数的基本关系,正弦函数的定义域和值域,二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.一段长为lm的篱笆围成一个一边靠墙的矩形菜地,矩形的长、宽各为多少时,菜地的面积最大?求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若f(x)=|2x-6|+|x|,画出函数图象,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,正方体ABCD-A1B1C1D1中E,F分别是棱AB,BB1的中点,则异面直线DD1和EF所成的角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知在数列{an}中,a1=1,an=$\frac{{a}_{n-1}}{2{a}_{n-1}+1}$,则a12等于(  )
A.$\frac{1}{21}$B.$\frac{1}{23}$C.$\frac{1}{25}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.四面体ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(x,y).
(Ⅰ)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时,第1次、第2次出现的点数,求满足$\overrightarrow{a}$•$\overrightarrow{b}$=-1的概率;
(Ⅱ)若x,y分别表示由计算机产生的两组1~6之间的均匀随机数,求满足$\overrightarrow{a}$•$\overrightarrow{b}$>0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商场欲研究每天平均气温与商场空调日销量的关系,抽取了去年10月1日至5日每日平均气温与空调销量的数据,得到如下资料:
日期1日2日3日4日5日
平均气温x(°C)2926242220
销量y(件)118753
该商场确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻2天数据的概率;
(2)若选取的是10月1日至2日的两组数据,请根据10月3日至10月5日的数据,求出y关于x的线性回归方程$\hat y=bx+a$;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2件,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的A的值为(  )
A.7B.15C.29D.31

查看答案和解析>>

同步练习册答案