精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)若在区间上恒成立,求实数的取值范围.
(Ⅰ)当时,的单调增区间是,单调减区间是;当时,单调递增;当时,的单调增区间是,单调减区间是.
(Ⅱ).

试题分析:(Ⅰ)首先求出导数,.由于含有参数,故分情况讨论. 利用求得其递增区间,求得其递减区间.
(Ⅱ)在区间上恒成立,则.由(1)可知在区间上只可能有极小值点,所以在区间上的最大值在区间的端点处取到,求出端点的函数值比较大小,较大者即为最大值,然后由便可求出的范围.
试题解析:(Ⅰ)求导得:.

时,在,在
所以的单调增区间是,单调减区间是
时,在,所以的单调增区间是
时,在,在.
所以的单调增区间是,单调减区间是.
(Ⅱ)由(1)可知在区间上只可能有极小值点,
所以在区间上的最大值在区间的端点处取到,
即有
解得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,函数
(Ⅰ)当时,求的最小值;
(Ⅱ)若在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的单调区间;
(2)若,在区间恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)己知函数f (x)=ex,xR
(1)求 f (x)的反函数图象上点(1,0)处的切线方程。
(2)证明:曲线y=f(x)与曲线y=有唯一公共点;
(3)设,比较的大小,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)己知函数
(1)试探究函数的零点个数;
(2)若的图象与轴交于两点,中点为,设函数的导函数为, 求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数a的值;
(Ⅲ)设,求在区间上的最大值(其中e为自然对的底数)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若曲线在它们的交点处有相同的切线,求实数的值;
(2)当时,若函数在区间内恰有两个零点,求实数的取值范围;
(3)当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)若,求函数的单调区间;
(Ⅱ)求证:
(Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数的导函数)在区间上总不是单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案