精英家教网 > 高中数学 > 题目详情

数学公式的图象关于原点对称,是a=________.


分析:利用函数的图象关于原点对称,可得函数是奇函数,利用奇函数的定义,可求得结论.
解答:∵的图象关于原点对称,
∴函数是奇函数,即f(-x)=-f(x)
=-(
解得2a=1
∴a=
故答案为:
点评:本题考查函数的对称性,考查函数的奇偶性,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(1)求f(x)与g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=log 
1
2
1-ax
x-1
(a为常数)的图象关于原点对称
(1)求a的值;
(2)判断函数f(x)在区间(1,+∞)的单调性并证明;
(3)若对于区间[3,4]上的每一个x的值,f(x)>(
1
2
x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,则下列命题中:?
①若f(x-2)是偶函数,则函数f(x)的图象关于直线x=2对称;?②若f(x+2)=-f(x-2),则函数f(x)的图象关于原点对称;?③函数y=f(2+x)与函数y=f(2-x)的图象关于直线x=2对称;?④函数y=f(x-2)与函数y=f(2-x)的图象关于直线x=2对称.?
其中正确的命题序号是
.?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省湘中名校高三(上)9月联考数学试卷 (理科)(解析版) 题型:填空题

的图象关于原点对称,是a=   

查看答案和解析>>

同步练习册答案