精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足:f(x)+f′(x)>2,f(0)=3,则不等式exf(x)<2ex+1(其中e为自然对数的底数)的解集为
 
考点:利用导数研究函数的单调性,导数的运算
专题:计算题,函数的性质及应用,导数的综合应用
分析:令F(x)=exf(x)-2ex-1,从而求导F′(x)=ex(f(x)+f′(x)-2)>0,从而由导数求解不等式.
解答: 解:令F(x)=exf(x)-2ex-1,
则F′(x)=ex[f(x)+f′(x)-2]>0,
故F(x)是R上的单调增函数,
而F(0)=e0f(0)-2e0-1=0,
故不等式exf(x)<2ex+1(其中e为自然对数的底数)的解集为(-∞,0);
故答案为:(-∞,0).
点评:本题考查了导数的综合应用及利用函数求解不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-alnx,g(x)=-a+
1
x
(a∈R).若a=1,求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等轴双曲线C的中心在原点,焦点在x轴上,过抛物线y2=16x的焦点F且与x轴垂直的直线交双曲线C于A、B两点,若|AB|=4
3
,则C的实轴长为(  )
A、4
B、8
C、
2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

化简求值:(1)sin50°(1+
3
tan10°);
(2)tan10°+tan50°+
3
tan10°tan50°.

查看答案和解析>>

科目:高中数学 来源: 题型:

等边三角形ABC的边长为2,则
BC
CA
+
CA
AB
+
AB
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sin(2x+
π
3
).
(1)求x∈[-
π
2
,0]时,f(x)的解析式;
(2)求函数f(x)的单增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是各项均为正数的等比数列,且a2+a4=10,a3a5=64.
(1)求数列{an}的通项公式;
(2)设bn=2nan,求数列{bn}的前n项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=(
1
2
n,把数列{an}的各项排列如图的三角形状,记A(m,n)表示第m行的第n个数,则 
(1)A(4,5)=
 
      
(2)A(m,n)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的函数f(x)满足f(-x)+f(x)=0,且当x∈(-1,0)时,f(x)=-
3x
9x+1

(1)求函数f(x)在(-1,1)上的解析式;
(2)判断f(x)在(0,1)上的单调性;
(3)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?

查看答案和解析>>

同步练习册答案