【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是
或
作品获得一等奖”;
乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”;
丁说:“是
作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 .
科目:高中数学 来源: 题型:
【题目】已知直线l过定点P(1,1),且倾斜角为
,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为
.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级有学生1 000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表:
身高达标 | 身高不达标 | 总计 | |
经常参加体育锻炼 | 40 | ||
不经常参加体育锻炼 | 15 | ||
总计 | 100 |
(1)完成上表;
(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线![]()
(1)求证:直线
过定点;
(2)求直线
被圆
所截得的弦长最短时
的值;
(3)已知点
,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有
为一常数,试求所有满足条件的点N的坐标及该常数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,求函数
的极小值;
(2)设函数
,求函数
的单调区间;
(3)若在区间
上存在一点
,使得
成立,求
的取值范围,(
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
:
交椭圆于
,
两不同的点.
(1)求椭圆的方程;
(2)若直线
不过点
,求证:直线
,
与
轴围成等腰三角形.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com