精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2017)=1.

分析 利用函数的奇偶性以及函数的周期性化简求解即可.

解答 解:由已知函数是偶函数,且x≥0时,都有f(x+2)=f(x),当x∈[0,2)时,f(x)=log2(x+1),
所以f(-2017)=f(2017)=f(1)=log22=1.
故答案为:1.

点评 本题考查函数的周期性以及函数的奇偶性的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的单调函数f(x)满足对任意的x1,x2,都有f(x1+x2)=f(x1)+f(x2)成立.若正实数a,b满足f(a)+f(2b-1)=0,则$\frac{1}{a}+\frac{2}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四棱锥S-ABCD的底面是边长为2的正方形,顶点S在底面的射影是底面正方形的中心O,SO=2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为(  )
A.$\sqrt{2}+\sqrt{6}$B.$\sqrt{2}+\sqrt{3}$C.$\sqrt{3}+\sqrt{5}$D.$\sqrt{5}$+$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若圆x2+(y-2)2=1与椭圆$\frac{x^2}{m}$+$\frac{y^2}{n}$=1的三个交点构成等边三角形,则该椭圆的离心率的值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若0<x<y<1,则(  )
A.3y<3xB.logx3<logy3C.log2x>log2yD.${({\frac{1}{2}})^x}>{({\frac{1}{2}})^y}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(I)若a∈R且a≠0,求函数f(x)=ax2+x-a的“局部对称点”;
(II)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f($\frac{1-x}{1+x}$)=x,则f(x)的表达式为(  )
A.$\frac{1-x}{1+x}$B.$\frac{1+x}{1-x}$C.$\frac{x-1}{x+1}$D.$\frac{2x}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,离心率为$\frac{\sqrt{3}}{3}$,过点F且与x轴垂直的直线被椭圆截得的线段长为$\frac{4\sqrt{3}}{3}$,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知幂函数f(x)=(m2-3m+3)xm+1为偶函数,g(x)=loga[f(x)-ax](a>0且a≠1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)在区间(2,3)上为增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案