精英家教网 > 高中数学 > 题目详情
14.已知p:对?n∈[-1,1],不等式a2-5a-3≥$\sqrt{{n}^{2}+8}$恒成立;命题q:x2-2x+1-m2≤0(m>0).
(1)若p是真命题,求a的取值范围;
(2)若p是¬q的必要不充分条件,求实数m的取值范围.

分析 (1)求出$\sqrt{{n}^{2}+8}$的最大值,问题转化为解不等式a2-5a-3≥3,求出a的范围即可;
(2)分别求出p和q,根据p是¬q的必要不充分条件结合集合的包含关系,求出m的范围即可.

解答 解:(1)对?n∈[-1,1],不等式a2-5a-3≥$\sqrt{{n}^{2}+8}$恒成立,
即对?n∈[-1,1],不等式a2-5a-3≥3恒成立,
解得:a≥6或a≤-1;
(2)由(1):p:a≥6或a≤-1,
由q可得(x-1)2≤m2(m>0),
∴1-m≤x≤1+m,
∴¬q:x>m+1或x<1-m,
若p是¬q的必要不充分条件,
则1-m<-1且m+1>6,
解得:m>5.

点评 本题考查了充分必要条件,考查不等式的解法以及集合的包含关系,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某产品近5年的广告费支出x(百万元)与产品销售额y(百万元)的数据如表:
x12345
y50607080100
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)用所求回归方程预测该产品广告费支出6百万元的产品销售额y.
附:线性回归方程y=bx+a中,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=log2(x2+ax)在(1,+∞)是增函数,则a的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=-8,且向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为-3$\sqrt{2}$,则|$\overrightarrow{b}$|=$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示程序输出的结果是(  )
A.3,2B.2,2C.3,3D.2,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a=($\frac{1}{9}$)${\;}^{\frac{1}{3}}$,b=log93,c=3${\;}^{\frac{1}{9}}$,则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{4}^{x},x≤0}\\{lo{g}_{9}x,x>0}\end{array}\right.$,则f(f($\frac{1}{27}$))=$\frac{1}{8}$;当f(f(x0))≥$\frac{1}{2}$时x0的取值范围是[$\frac{1}{3}$,1]∪[729,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则(  )
A.f(x1)<f(x2B.f(x1)>f(x2
C.f(x1)=f(x2D.f(x1)<f(x2)和f(x1)=f(x2)都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若三进制数10k2(3)(k为正整数)化为十进制数为35,则k=2.

查看答案和解析>>

同步练习册答案