【题目】由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图:
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.
【答案】解:(Ⅰ)∵4.6和4.7都出现三次,
∴众数:4.6和4.7;中位数:4.75
(Ⅱ)由题意知本题是一个古典概型,
设Ai表示所取3人中有i个人是“好视力”,
至多有1人是“好视力”记为事件A,包括有一个人是好视力和有零个人是好视力,
∴ .
(Ⅲ)ξ的可能取值为0、1、2、3
∴分布列为
∴Eξ=1× +2× +3× =0.75
【解析】(1)根据所给的茎叶图看出16个数据,找出众数和中位数,中位数需要按照从小到大的顺序排列得到结论.(2)由题意知本题是一个古典概型,至多有1人是“好视力”包括有一个人是好视力和有零个人是好视力,根据古典概型公式得到结果.(3)由于从该校任选3人,记ξ表示抽到“好视力”学生的人数,得到变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.
【考点精析】根据题目的已知条件,利用茎叶图和平均数、中位数、众数的相关知识可以得到问题的答案,需要掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少;⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据.
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别为棱BB1、BC的中点,则异面直线AB1与EF所成角的大小为( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥P﹣ABC的底面是等腰直角三角形,且∠ACB= ,侧面PAB⊥底面ABC,AB=PA=PB=2.则这个三棱锥的三视图中标注的尺寸x,y,z分别是( )
A. ,1,
B. ,1,1
C.2,1,
D.2,1,1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形ADEF和菱形ABCD所在平面互相垂直,如图,其中AF=1,AD=2,∠ADC= ,点N时线段AD的中点.
(Ⅰ)试问在线段BE上是否存在点M,使得直线AF∥平面MNC?若存在,请证明AF∥平面MNC,并求出 的值,若不存在,请说明理由;
(Ⅱ)求二面角N﹣CE﹣D的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣ )2+(y﹣1)2=1和两点A(﹣t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则当t取得最大值时,点P的坐标是( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期为π,且f(﹣x)=f(x),则( )
A.f(x)在(0, )单调递增
B.f(x)在( , )单调递减
C.f(x)在( , )单调递增
D.f(x)在( ,π)单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2013年至2016年期间,甲每年6月1日都到银行存入m元的一年定期储蓄,若年利率为q保持不变,且每年到期的存款本息自动转为新的一年定期,到2017年6月1日甲去银行不再存款,而是将所有存款的本息全部取回,则取回的金额是( )
A.m(1+q)4元
B.m(1+q)5元
C. 元
D. 元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com