精英家教网 > 高中数学 > 题目详情
求曲线y=
1x
和y=x2在它们交点处的两条切线与x轴所围成的三角形面积.
分析:先联立方程,求出两曲线交点,再分别对y=
1
x
和y=x2求导,利用导数,求出两曲线在交点处的切线斜率,利用点斜式求出切线方程,找到两切线与x轴交点,最后用面积公式计算面积即可.
解答:解:曲线y=
1
x
和y=x2在它们的交点坐标是(1,1),
两条切线方程分别是y=-x+2和y=2x-1,
它们与x轴所围成的三角形的面积是
3
4
点评:本题考查了利用导数求切线斜率,属于导数的应用.应当掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,设曲线y=
1
x
上的点与x轴上的点顺次构成等腰直角三角形△OB1A1,△A1B2A2,…,直角顶点在曲线上y=
1
x
,设An的坐标为(an,0),A0为原点
(1)求a1,并求出an和an-1 n∈N*之间的关系式;
(2)求数列{an}的通项公式;
(3)设bn=
2
an-1+an
(n∈N*)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1x
和y=x2
(1)求它们的交点;
(2)分别求它们在交点处的切线方程;
(3)求两条切线与x轴所围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数y=f(x)=ax+
1
x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

同步练习册答案