精英家教网 > 高中数学 > 题目详情
7.设命题p:?x∈R,ex≥x+1,则¬p为(  )
A.?x∈R,ex<x+1B.?x0∈R,ex0<x0+1C.?x0∈R,ex0≤x0+1D.?x∈R,ex0≥x0+1

分析 利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以命题p:?x∈R,ex≥x+1,则¬p为?x0∈R,ex0<x0+1,
故选:B

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设(2x-1)4=a0+a1x+a2x2+a3x3+a4x4
(1)求a2的值
(2)求(a0+a2+a42-(a1+a32的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中正确命题的个数是(  )
(1)对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1>0;
(2)命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
(3)回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为$\widehat{y}$=1.23x+0.08;
(4)m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件.
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)是定义在R上的函数,它的图象关于点(1,0)对称,当x≤1时,f(x)=2xe-x(e为自然对数的底数),则f(2+3ln2)的值为(  )
A.48ln2B.40ln2C.32ln2D.24ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=1+t}\\{y=-t}\end{array}\right.$(t为參数) 以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程ρ+2rcosθ=0(r>0).
(I )求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)当r为何值时,曲线C 上有且只有3个点到直线l的距离为1?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x,y满足约束条件$\left\{\begin{array}{l}{x-2≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$则目标函数z=$\frac{2y}{x+2}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若单位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,则向量$\overrightarrow{e_1}-2\overrightarrow{e_2}$与向量$\overrightarrow{e_1}$的夹角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线W:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)一个焦点为F(2,0),若点F到W的渐近线的距离是1,则W的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个封闭的正三棱柱容器,高为8,内装水若干(如图甲,底面处于水平状态).将容器放倒(如图乙,一个侧面处于水平状态),这时水面所在的平面与各棱交点E,F,F1,E1分别为所在棱的中点,则图甲中水面的高度为6.

查看答案和解析>>

同步练习册答案