精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x2+4x (x≥0)
x2+mx  (x<0)
是奇函数,若f(x)在区间[-2,a-1]上单调递增,则实数a的取值范围是
(-1,3]
(-1,3]
分析:f(x)=
-x2+4x (x≥0)
x2-4x  (x<0)
,如图所示,结合图象求出实数a的取值范围.
解答:解:函数f(x)=
-x2+4x (x≥0)
x2+mx  (x<0)
是奇函数,故有m=4,故f(x)=
-x2+4x (x≥0)
x2-4x  (x<0)
,如图所示:

若f(x)在区间[-2,a-1]上单调递增,则a-1≤2,且a-1>-2,解得-1<a≤3,
故答案为(-1,3].
点评:本题主要考查函数的奇偶性的应用,体现了数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案