精英家教网 > 高中数学 > 题目详情
如图,已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.

(1)求证:平面EFG⊥平面PAD;
(2)若M是线段CD上一点,求三棱锥M﹣EFG的体积.
(1)详见解析;(2).

试题分析:(1)要证明面面垂直,只需在一个平面内找到另一平面的一条垂线.由已知平面平面,且,可证平面,再根据是中位线,可证,从而平面,进而再证平面平面,该题实质是先找到面的一条垂线,再将平移到面内;
(2)点是线段的动点,考虑到到面的距离相等,故,再结合第(1)问结果,取的中点连接,据面面垂直的性质,点的距离就是三棱锥的高,再求,进而求体积.
试题解析:(1)∵平面平面,平面平面 平面平面,又中,分别是的中点,,可得平面 平面,∴平面平面
(2) 平面平面平面,因此上的点到平面的距离等于点到平面的距离,∴,取的中点连接,则平面 平面,∴,于是
∵平面平面,平面平面是正三角形,∴点到平面的距离等于正的高,即为,因此,三棱锥M﹣EFG的体积==.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3.

(1)求证:BB1∥平面EFM;
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为的菱形,, 底面,,的中点,的中点.

(Ⅰ)求四棱锥的体积;
(Ⅱ)证明:直线平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(Ⅰ)如果为线段VC的中点,求证:平面
(Ⅱ)如果正方形的边长为2, 求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4

(Ⅰ)设M是PC上一点,证明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中点,求棱锥P-DMB的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三条侧棱两两互相垂直且长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆柱底面圆的半径和圆柱的高都为2,则圆柱侧面展开图的面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长为4的正方体ABCD—A1B1C1D1中,E、F分别是AD,A1D1的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A1B1C1D1上运动,则线段MN的中点P在二面角A—A1 D1—B1内运动所形成的轨迹(曲面)的面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知下列三个命题:
①若一个球的半径缩小到原来的,则其体积缩小到原来的
②若两组数据的平均数相等,则它们的标准差也相等;
③直线与圆相切.
其中真命题的序号为                   .

查看答案和解析>>

同步练习册答案