精英家教网 > 高中数学 > 题目详情
,则      
3

试题分析:取特殊值代入得
点评:本题中函数求值采用特殊值法较简单,此法是选择题中常用的方法
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(为正整数,2012年为第一年)的利润为万元.设从2012年起的前年,该厂不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金).
(1)求的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司拟投资开发某种新能源产品,估计能获得10万元至1000万元的投资收益.为加快开发进程,特制定了产品研制的奖励方案:奖金(万元)随投资收益(万元)的增加而增加,但奖金总数不超过9万元,同时奖金不超过投资收益的20%. 
现给出两个奖励模型:①;②.
试分析这两个函数模型是否符合公司要求?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为4,且f( 1)>1,

f(2)=m2-2m,f(3)= ,则实数m的取值集合是(   )
A.B.{O,2}
C.D.{0}

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正弦曲线通过坐标变换公式,变换得到的新曲线为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在上的奇函数,且当时,不等式成立,若,则a,b,c间的大小关系是(  ).
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在区间[0,4]的最大值是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数,满足,若,则集合中最小的元素是   .

查看答案和解析>>

同步练习册答案