【题目】(本小题满分12分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)如果对所有的≥0,都有≤,求的最小值;
(Ⅲ)已知数列中, ,且,若数列的前n项和为,求证:
.
【答案】(Ⅰ)函数在上单调递减,在单调递增;(Ⅱ);(Ⅲ)证明见解析.
【解析】试题(Ⅰ)先对函数求导,再对的取值范围进行讨论,即可得的单调性;(Ⅱ)设,先对函数求导,再对的取值范围进行讨论函数的单调性,进而可得的最小值;(Ⅲ)先由已知条件求出数列的通项公式和前项和,再把转化为,由(Ⅱ)可得, ,令,可得,进而可证,即可证.
试题解析:(Ⅰ) 的定义域为, 1分
当时, ,当时, 2分
所以函数在上单调递减,在单调递增. 3分
(Ⅱ)设,则
因为≥0,故5分
(ⅰ)当时, , ,所以在单调递减,而,所以对所有的≥0, ≤0,即≤;
(ⅱ)当时, ,若,则, 单调递增,而,所以当时, ,即;
(ⅲ)当时, , ,所以在单调递增,而,所以对所有的, ,即;
综上, 的最小值为2. 8分
(Ⅲ)由得, ,由得, ,
所以,数列是以为首项,1为公差的等差数列,
故, , 9分
由(Ⅱ)知时, , ,
即, . 10分
法一:令,得,
即
因为11分
所以12分
故12分
法二:
下面用数学归纳法证明.
(1)当时,令代入,即得,不等式成立
(2)假设时,不等式成立,即
则时,
令代入,得
即
由(1)(2)可知不等式对任何 都成立.
故12分
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形中,,,,点是边的中点,将沿折起,使平面平面,连接,,,得到如图2所示的几何体.
(1)求证:平面;
(2)若,且与平面所成角的正切值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某健身房为了解运动健身减肥的效果,调查了名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:)变化情况:
对比数据,关于这名肥胖者,下面结论正确的是( )
A.他们健身后,体重在区间内的人数较健身前增加了人
B.他们健身后,体重原在区间内的人员一定无变化
C.他们健身后,人的平均体重大约减少了
D.他们健身后,原来体重在区间内的肥胖者体重都有减少
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MAC,PA=PD=,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数).
(1)求曲线的直角坐标系方程和直线的普通方程;
(2)点在曲线上,且到直线的距离为,求符合条件的点的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com