精英家教网 > 高中数学 > 题目详情
14.函数f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$的定义域是(-∞,0).

分析 要使函数f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$有意义,只需1-2x>0,即2x<1,运用指数函数的单调性,即可得到所求定义域.

解答 解:要使函数f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$有意义,
只需1-2x>0,即2x<1,
解得x<0.
则定义域为(-∞,0).
故答案为:(-∞,0).

点评 本题考查函数的定义域的求法,注意运用分式分母不为0,偶次根式被开方数非负,同时考查指数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设a∈(0,1),则函数y=$\frac{1}{\sqrt{lo{g}_{a}(x-1)}}$的定义域为(  )
A.(1,2]B.(1,+∞)C.(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设A,B是非空集合,定义A?B={x|x∈A∪B且x∉A∩B}.已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M?N=(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=$\left\{{\begin{array}{l}{{x^2}+1}\\{2x}\end{array}}\right.\begin{array}{l}(x≤0)\\(x>0)\end{array}$,若f(x)=5,则x的值是-2或$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中,真命题是(  )
A.?x∈R,2x>x2B.若a>b,c>d,则 a-c>b-d
C.?x∈R,ex<0D.ac2<bc2是a<b的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设两个向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,若向量2t$\overrightarrow{a}$+7$\overrightarrow{b}$与向量$\overrightarrow{a}$+t$\overrightarrow{b}$的夹角为钝角,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x+$\frac{m}{x}$,且f(1)=2.
(Ⅰ)求m的值;
(Ⅱ)判断f(x)的奇偶性;
(Ⅲ)用定义法证明f(x)在区间(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可能为(  )
A.(1)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a、b、c分别是△ABC三个内角A、B、C所对的边,则a2=c(b+c)是A=2C成立的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案