精英家教网 > 高中数学 > 题目详情
(2012•佛山一模)在△ABC中,角A、B、C的对边分别为a、b、c,已知B=60°,cos(B+C)=-
1114

(Ⅰ)求cosC的值;
(Ⅱ)若a=5,求△ABC的面积.
分析:(Ⅰ)由B和C为三角形的内角,得到sin(B+C)大于0,由cos(B+C)的值,利用同角三角函数间的基本关系求出sin(B+C)的值,然后将C变形为(B+C)-B,利用两角和与差的余弦函数公式化简cos[(B+C)-B]后,根据B的度数,利用特殊角的三角函数值求出sinB和cosB的值,将各自的值代入求出cos[(B+C)-B]的值,即为cosC的值;
(Ⅱ)由C为三角形的内角及第一问求出的cosC的值,利用同角三角函数间的基本关系求出sinC的值,再由三角形的内角和定理及诱导公式得到sinA=sin(B+C),由sin(B+C)的值得到sinA的值,由sinC,sinA及a的值,利用正弦定理求出c的值,进而由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:(本小题满分12分)
解:(Ⅰ)在△ABC中,由cos(B+C)=-
11
14

得sin(B+C)=
1-cos2(B+C)
=
1-(-
11
14
)
2
=
5
3
14

又B=60°,
∴cosC=cos[(B+C)-B]
=cos(B+C)cosB+sin(B+C)sinB
=-
11
14
×
1
2
+
5
3
14
×
3
2
=
1
7
;…(6分)
(Ⅱ)∵cosC=
1
7
,C为三角形的内角,sin(B+C)=
5
3
14

∴sinC=
1-cos2C
=
1-(
1
7
)
2
=
4
3
7
,sinA=sin(B+C)=
5
3
14

在△ABC中,由正弦定理
a
sinA
=
c
sinC
得:
5
5
3
14
=
c
4
3
7

∴c=8,又a=5,sinB=
3
2

则△ABC的面积为S=
1
2
acsinB=
1
2
×5×8×
3
2
=10
3
.…(12分)
点评:此题考查了正弦定理,三角形的面积公式,两角和与差的余弦函数公式,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•佛山一模)设n∈N*,圆Cn:x2+y2=
R
2
n
(Rn>0)与y轴正半轴的交点为M,与曲线y=
x
的交点为N(
1
n
yn
),直线MN与x轴的交点为A(an,0).
(1)用n表示Rn和an
(2)求证:an>an+1>2;
(3)设Sn=a1+a2+a3+…+an,Tn=1+
1
2
+
1
3
+…+
1
n
,求证:
7
5
Sn-2n
Tn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)某学校三个社团的人员分布如下表(每名同学只参加一个社团)
合唱社 粤曲社 书法社
高一 45 30 a
高二 15 10 20
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则这三个社团人数共有
150
150

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:平面PAC平面BEF;
(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)下列函数中既是奇函数,又在区间(-1,1)上是增函数的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)函数y=
3
sinx+sin(x+
π
2
)的最小正周期是

查看答案和解析>>

同步练习册答案