精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项中,a1是最小的,且a1+a4=6,a2a3=5,Sn=150,求n的值.
分析:设等差数列的公差为d,由已知可得方程组,解之可得首项和公差,代入求和公式可得n的方程,解之可得.
解答:解:设等差数列的公差为d,可得
a1+a1+3d=6
(a1+d)(a1+2d)=5

解之可得
a1=-3
d=4
,或
a1=9
d=-4

由于a1是最小的故取
a1=-3
d=4

故可得Sn=-3n+
n(n-1)
2
×4
=150,
解之可得n=10,或n=
15
2
(舍去),
故n的值为:10
点评:本题考查等差数列的通项公式和求和公式,得出数列的首项和公差是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案