精英家教网 > 高中数学 > 题目详情
已知点列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x4
上的点,点列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)顺次为x轴上的点,其中x1=a(0<a<1),对任意的n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.
(Ⅰ)求证:对任意的n∈N*,xn+2-xn是常数,并求数列{xn}的通项公式;
(Ⅱ)问是否存在等腰直角三角形AnBnAn+1?请说明理由.
分析:(Ⅰ)由点An、Bn、An+1构成以Bn为顶点的等腰三角形,则有|AnBn|=|An+1Bn|得到xn+1+xn=2n,从而有xn+2+xn+1=2(n+1)两式作差求解.
(Ⅱ)假设存在等腰直角三角形AnBnAn+1,.在Rt△AnBnAn+1中,|AnAn+1|=|xn+1-xn|=2×
n
4
=
n
2
.由n为正奇数时,|xn+1-xn|=2(1-a),故有2(1-a)=2×
n
4
,即1-a=
n
4
即0<n<4.n=1,3使得三角形AnBnAn+1为等腰直角三角形.当n为正偶数时,|xn+1-xn|有2a=2×
n
4
,即a=
n
4
,当n=2时,使得三角形AnBnAn+1为等腰直角三角形.
解答:解:(Ⅰ)由题意得Bn(n,
n
4
)
,An(xn,0),An+1(xn+1,0),
∵点An、Bn、An+1构成以Bn为顶点的等腰三角形,
∴|AnBn|=|An+1Bn|,即
(xn-n)2+(
n
4
)
2
=
(xn+1-n)2+(
n
4
)
2

得xn2-2nxn=xn+12-2nxn+1?(xn+1-xn)(xn+1+xn)=2n(xn+1-xn
又∵xn+1≠xn,∴xn+1+xn=2n,①
则xn+2+xn+1=2(n+1)②
由②-①得,xn+2-xn=2,即xn+2-xn是常数.(6分)
即所列{x2k-1},{x2k}(k∈N*)都是等差数列.
(注:可以直接由图象得到
xn+xn+1
2
=n
,即xn+xn+1=2n,(n∈N*))
当n为正奇数时,xn=x1+(
n+1
2
-1)×2=a+n-1

当n为正偶数时,由x2+x1=2得,x2=2-a,故xn=x2+(
n
2
-1)×2=n-a

xn=
a+n-1,(n为正奇数)
n-a,(n为正偶数)
.(8分)
(Ⅱ)假设存在等腰直角三角形AnBnAn+1,由题意∠AnBnAn+1=90°.
在Rt△AnBnAn+1中,|AnAn+1|=|xn+1-xn|=2×
n
4
=
n
2
.(10分)
当n为正奇数时,xn=a+n-1,xn+1=n+1-a,
∴|xn+1-xn|=|n+1-a-a-n+1|=|2-2a|=2(1-a),故有2(1-a)=2×
n
4
,即1-a=
n
4

又∵0<a<1,∴0<1-a<1,∴0<
n
4
<1
,即0<n<4,
∴当n=1,3时,使得三角形AnBnAn+1为等腰直角三角形.(12分)
当n为正偶数时,xn=n-a,xn+1=a+n+1-1=a+n,
∴|xn+1-xn|=|a+n-n+a|=|2a|=2a,故有2a=2×
n
4
,即a=
n
4

又∵0<a<1,∴0<
n
4
<1
,即0<n<4,
∴当n=2时,使得三角形AnBnAn+1为等腰直角三角形.(14分)
综上所述,当n=1,2,3时,使得三角形AnBnAn+1为等腰直角三角形.(16分)
点评:本题主要考查解析几何与数列的综合问题,涉及到求数列的通项公式,两点间的距离公式以及分类讨论,数形结合等思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数y=
1
4
x+
1
12
图象上的点,点列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点An、Bn、An+1构成以
Bn为顶点的等腰三角形.
(1)求{yn}的通项公式,且证明{yn}是等差数列;
(2)试判断xn+2-xn是否为同一常数(不必证明),并求出数列{xn}的通项公式;
(3)在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知点列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x4
上的点,点列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)顺次为x轴上的点,其中x1=a(0<a<1),对任意的n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.
(1)证明:数列{yn}是等差数列;
(2)求证:对任意的n∈N*,xn+2-xn是常数,并求数列{xn}的通项公式;
(3)对上述等腰三角形AnBnAn+1添加适当条件,提出一个问题,并做出解答.(根据所提问题及解答的完整程度,分档次给分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数y=
1
4
x+
1
12
图象上的点,点列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点An、Bn、An+1构成一个顶角的顶点为Bn的等腰三角形.
(1)求数列{yn}2的通项公式,并证明{yn}3是等差数列;
(2)证明xn+2-xn5为常数,并求出数列{xn}6的通项公式;
(3)问上述等腰三角形An8Bn9An+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)已知点列B1(1,b1),B2(2,b2),…,Bn(n,bn),…(n∈N?)顺次为抛物线y=
1
4
x2上的点,过点Bn(n,bn)作抛物线y=
1
4
x2的切线交x轴于点An(an,0),点Cn(cn,0)在x轴上,且点An,Bn,Cn构成以点Bn为顶点的等腰三角形.
(1)求数列{an},{cn}的通项公式;
(2)是否存在n使等腰三角形AnBnCn为直角三角形,若有,请求出n;若没有,请说明理由.
(3)设数列{
1
an•(
3
2
+cn)
}的前n项和为Sn,求证:
2
3
≤Sn
4
3

查看答案和解析>>

同步练习册答案