精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足a1= ,an+1﹣an+anan+1=0(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.

【答案】解(Ⅰ):由已知可得数列{an}各项非零. 否则,若有ak=0结合ak﹣ak1+akak1=0ak1=0,
继而ak1=0ak2=0a1=0,与已知矛盾.
所以由an+1﹣an+anan+1=0可得
即数列 是公差为1的等差数列.
所以
所以数列{an}的通项公式是 (n∈N*).
(Ⅱ) 证明一:因为
所以a1+a1a2+a1a2a3+…+a1a2…an =
所以a1+a1a2+a1a2a3+…+a1a2…an<1.
证明二:a1+a1a2+a1a2a3+…+a1a2…an= = =
所以a1+a1a2+a1a2a3+…+a1a2…an<1
【解析】(Ⅱ)由an+1﹣an+anan+1=0,两边同除以anan+1 , 得 ,从而可知数列是首项为2,公差为1的等差数列,进而可求数列{an}的通项公式;(Ⅱ)方法一,放缩后,利用等比数列的求和公式, 方法二:放缩法后,利用裂项求和
【考点精析】通过灵活运用数列的通项公式,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,且
(1)化简f(a);
(2)若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①若,则

②若是不共线的四点,则是四边形为平行四边形的充要条件;

③若 ,则

的充要条件是

其中正确命题的序号是(

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若曲线为自然对数的底数)上存在点使得,则实数的取值范围为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的奇偶性;

(2)当时,求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数的图象恰好相切与点,求实数 的值;

(2)当时, 恒成立,求实数的取值范围;

(3)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形ABCD中,E为BC的中点,且EA=1,ED= .若 =﹣1,则 的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0, ))的图象在y轴上的截距为1,在相邻两个最值点 和(x0 , ﹣2)上(x0>0),函数f(x)分别取最大值和最小值.
(1)求函数f(x)的解析式;
(2)若f(x)= 在区间 内有两个不同的零点,求k的取值范围;
(3)求函数f(x)在区间 上的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0 ) 经过点 P(1, ),离心率 e=
(Ⅰ)求椭圆C的标准方程.
(Ⅱ)设过点E(0,﹣2 ) 的直线l 与C相交于P,Q两点,求△OPQ 面积的最大值.

查看答案和解析>>

同步练习册答案