【题目】数列{an}满足a1= ,an+1﹣an+anan+1=0(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.
【答案】解(Ⅰ):由已知可得数列{an}各项非零. 否则,若有ak=0结合ak﹣ak﹣1+akak﹣1=0ak﹣1=0,
继而ak﹣1=0ak﹣2=0…a1=0,与已知矛盾.
所以由an+1﹣an+anan+1=0可得 .
即数列 是公差为1的等差数列.
所以 .
所以数列{an}的通项公式是 (n∈N*).
(Ⅱ) 证明一:因为 .
所以a1+a1a2+a1a2a3+…+a1a2…an = .
所以a1+a1a2+a1a2a3+…+a1a2…an<1.
证明二:a1+a1a2+a1a2a3+…+a1a2…an= = = .
所以a1+a1a2+a1a2a3+…+a1a2…an<1
【解析】(Ⅱ)由an+1﹣an+anan+1=0,两边同除以anan+1 , 得 ,从而可知数列是首项为2,公差为1的等差数列,进而可求数列{an}的通项公式;(Ⅱ)方法一,放缩后,利用等比数列的求和公式, 方法二:放缩法后,利用裂项求和
【考点精析】通过灵活运用数列的通项公式,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①若,则;
②若是不共线的四点,则是四边形为平行四边形的充要条件;
③若, ,则;
④的充要条件是且
其中正确命题的序号是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0, ))的图象在y轴上的截距为1,在相邻两个最值点 和(x0 , ﹣2)上(x0>0),函数f(x)分别取最大值和最小值.
(1)求函数f(x)的解析式;
(2)若f(x)= 在区间 内有两个不同的零点,求k的取值范围;
(3)求函数f(x)在区间 上的对称轴方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0 ) 经过点 P(1, ),离心率 e=
(Ⅰ)求椭圆C的标准方程.
(Ⅱ)设过点E(0,﹣2 ) 的直线l 与C相交于P,Q两点,求△OPQ 面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com