精英家教网 > 高中数学 > 题目详情
9.已知正四棱台上底面边长为4cm,下底面边长为10cm,侧棱为5cm,求它的斜高和体积.

分析 如图:在正四棱台ABCD-A1B1C1D1中,找出高和斜高,分别用勾股定理求出斜高和高.然后求解体积.

解答 解:如图:正四棱台ABCD-A1B1C1D1 中,高h=A1O,斜高 h′=A1E,OE=$\frac{10-4}{2}$=3cm.AE=OE=3cm,侧棱AA1=5cm,A1E=$\sqrt{{{AA}_{1}}^{2}-{AE}^{2}}$=4cm.A1O=$\sqrt{{{AA}_{1}}^{2}-{OE}^{2}}$=$\sqrt{7}$cm.
棱台的体积:V=$\frac{1}{3}×\sqrt{7}×(16+100+\sqrt{1600})$=$\frac{156\sqrt{7}}{3}$=52$\sqrt{7}$(cm3).
正四棱台的斜高:4cm;体积为:52$\sqrt{7}$cm3

点评 本题考查正四棱台的性质,构造直角梯形和直角三角形,利用勾股定理是解决问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.给出下列六个命题:
(1)若f(x-1)=f(1-x),则函数f(x)的图象关于直线x=1对称.
(2)y=f(x-1)与y=f(1-x)的图象关于直线x=0对称.
(3)y=f(x+3)的反函数与y=f-1(x+3)是相同的函数.
(4)$y={({\frac{1}{2}})^{|x|}}-{sin^2}$x+2015无最大值也无最小值.
(5)y=$\frac{2tanx}{{1-{{tan}^2}x}}$的周期为π.
(6)y=sinx(0≤x≤2π)有对称轴两条,对称中心三个.
则正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,-x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=2,E,F分别是CC1,BC的中点.
(1)求证:EF⊥平面AB1F;
(2)求三棱锥B1-AEF的体积;
(3)若点M是AB上一点,求|FM|+|MB1|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上取三点,其横坐标满足x1+x3=2x2,三点与某一焦点的连线段长分别为r1,r2,r3.则r1,r2,r3满足(  )
A.r1,r2,r3成等差数列B.$\frac{1}{{r}_{1}}$+$\frac{1}{{r}_{2}}$=$\frac{2}{{r}_{3}}$
C.r1,r2,r3成等比数列D.以上结论全不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.我国是水资源相对匿乏的国家,为鼓励节约用水,某市打算出台一项水费政策措施.规定每季度每人用水量不超过5吨时,每吨水费收基本价1.3元.若超过5吨而不超过6吨时,超过部分每吨水费收3.9元,若超过6吨而不超过7吨时,超过部分每吨水费收6.5元.
(1)如果某人本季度实际用水量为x(x≤7)吨,设本季度他应交水费为y元,试求出y与x的函数解析式;
(2)画出(1)中求出的函数图象;
(3)如果小王本季度应交水费11.7元,那么这一季度他实际用水量是多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断下列各式的符号:
(1)sinα•cosα(其中α是第二象限角);
(2)sin285°cos(-105°);
(3)sin3•cos4•tan(-$\frac{23π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.当a>1时.函数y=af(x)与y=f(x)具有相同的的单调性;当0<a<1时.函数y=af(x)与y=f(x)具有相反的的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知y=$\frac{\sqrt{3-ax}}{a-1}$在(0,1)上单调递减,则a的取值范围是(-∞,0)∪(1,3].

查看答案和解析>>

同步练习册答案