精英家教网 > 高中数学 > 题目详情

正方体ABCD-A′B′C′D′中,直线D′A与DB所成的角为


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    90°
C
分析:易知BD1∥AC1,可得∠DBD1即为异面直线D'A与DB所成的角,又因为△DBD1为等边三角形,易得结论.
解答:解:连接BD1,则BD1∥AC1
∴∠DBD1即为异面直线D'A与DB所成的角,
∵△DBD1为等边三角形,∴∠DBD1=60°,
故选C.
点评:本题主要考查异面直线所角的定义,同时,还考查转化思想和平面图形的特征,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在棱长为1的正方体ABCD-A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′.
(1)证明:平面PQEF和平面PQGH互相垂直;
(2)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;
(3)若D′E与平面PQEF所成的角为45°,求D′E与平面PQGH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,异面直线A′B与AD′所成的角等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,直线AC′与平面ABCD所成角的正弦值为
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A′B′C′D′的棱长为1,线段B′D′上有两个动点E,F且EF=
3
2
,则下列结论中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)如图,在正方体ABCD-A′B′C′D′中,异面直线BD与B′C所成角为
π
3
π
3
;直线A′C与平面ABCD所成角的正弦值为
3
3
3
3

查看答案和解析>>

同步练习册答案