精英家教网 > 高中数学 > 题目详情
已知f(x)=
log2x           x>0
f(x+1)+1    x≤0
,则f(2)+f(0)的值等于
2
2
分析:根据解析式分别求出f(2)和f(0),再求f(2)+f(0).
解答:解:由题意知f(2)=log22=1,f(0)=f(1)+1=log21+1=1,
所以f(2)+f(0)=2,
故答案为2.
点评:本题考察分段函数求值,根据自变量所在范围选择对应的解析式代入求值即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log(2x+1)在(-,0)内恒有f(x)>0,则a的取值范围是

A.a>1

B.0<a<1

C.a<-1或a>1

D.-a<-1或1<a

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中文科数学试卷(解析版) 题型:解答题

已知f(x)=log  (a>0且a≠1).

(1)求f(x)的 定义域;

(2)判断f(x)的奇偶性并予以证明.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log a (a>0, 且a≠1)

求f(x)的定义域

求使 f(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案