精英家教网 > 高中数学 > 题目详情
6.已知集合A={x|x=a+$\frac{1}{6}$,a∈Z},B={x|x=$\frac{b}{2}$-$\frac{1}{3}$,b∈Z},C={x|x=$\frac{c}{2}$+$\frac{1}{6}$,c∈Z},则A,B,C之间的关系是(  )
A.A=B?CB.A?B=CC.A?B?CD.B?C=A

分析 将三个集合同时扩大6倍,发现:B,C都是以3为周期的,而相位正好也是3,所以B=C,而A的周期为6,很明显真包含于B、C的,即可得出结论.

解答 解:将三个集合同时扩大6倍,再来看A={x|x=6a+1},B={x|x=3b-2},C={x|x=3c+1}
明显发现:B,C都是以3为周期的,而相位正好也是3,所以B=C,而A的周期为6,很明显真包含于B、C的,所以A?B=C.
故选:B.

点评 本题考查集合的包含关系,考查学生转化问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.平面直角坐标系中,已知直线l:x=4,定点F(1,0),动点P(x,y)到直线l的距离是到定点F的距离的2倍.
(1)求动点P的轨迹C的方程;
(2)若M为轨迹C上的动点,直线m过点M且与轨迹C只有一个公共点,求证:此时点E(-1,0)和点F(1,0)到直线m的距离之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A、B两点,若C1恰好将线段AB三等分,则椭圆C1的方程是(  )
A.$\frac{2{x}^{2}}{11}$+2y2=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{5}$=1D.$\frac{{x}^{2}}{2}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,n∈N*
(1)当n=5时,求a0的值;
(2)求$\frac{1}{n}$a1+$\frac{2}{n}$a2+…+$\frac{n-1}{n}$an-1+$\frac{n}{n}$an(n≥2,n∈N)
(3)设bn=$\frac{{a}_{2}}{{2}^{n-3}}$,Tn=b2+b3+b4+…bn,试用数学归纳法证明:当n≥2时,Tn=$\frac{n(n+1)(n-1)}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}是等差数列,满足a1=2,a4=14,数列{bn}满足b1=1,b4=6,且{an-bn}是等比数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若?n∈N*,都有bn≤bk成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知F1、F2分别为椭圆C1:$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0)的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=$\frac{5}{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB取一点Q,满足:$\overrightarrow{AP}$=-λ$\overrightarrow{PB}$,$\overrightarrow{AQ}$=λ$\overrightarrow{QB}$(λ≠0且λ≠±1),探究是否存在一条直线使得点Q总在该直线上,若存在求出该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设数列{an}前n项和Sn,且a1=1,{Sn-n2an}为常数列,则Sn=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,P($\frac{2\sqrt{6}}{3}$,1)为椭圆C上的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=kx+b(k≠0)与椭圆C交于不同的两点,且线段AB的垂直平分线过定点M($\frac{1}{6}$,0),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=$\sqrt{3}$acosB,则角B的大小为60°.

查看答案和解析>>

同步练习册答案