精英家教网 > 高中数学 > 题目详情
14.已知:(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,n∈N*
(1)当n=5时,求a0的值;
(2)求$\frac{1}{n}$a1+$\frac{2}{n}$a2+…+$\frac{n-1}{n}$an-1+$\frac{n}{n}$an(n≥2,n∈N)
(3)设bn=$\frac{{a}_{2}}{{2}^{n-3}}$,Tn=b2+b3+b4+…bn,试用数学归纳法证明:当n≥2时,Tn=$\frac{n(n+1)(n-1)}{3}$.

分析 (1)先把(x+1)n化为[(x-1)+2]n,使用二项式定理计算;
(2)利用二项式定理求出an,代入计算化简再逆用二项式定理得出答案;
(3)求出bn,使用数学归纳法证明.

解答 解:(1)∵(x+1)n=[(x-1)+2]n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n
∴a0=${C}_{n}^{n}$•2n
∴当n=5时,a0=${C}_{5}^{5}$•25=32.
(2)由(1)可知a1=${C}_{n}^{n-1}•{2}^{n-1}$,a2=${C}_{n}^{n-2}•{2}^{n-2}$,a3=${C}_{n}^{n-3}•{2}^{n-3}$,…an=${C}_{n}^{0}•{2}^{0}$.
∴$\frac{1}{n}$a1=2n-1=${C}_{n-1}^{0}•{2}^{n-1}$,$\frac{2}{n}$a2=(n-1)•2n-2=${C}_{n-1}^{1}•{2}^{n-2}$,…,$\frac{n-1}{n}$an-1=(n-1)•2=${C}_{n-1}^{n-2}•2$,$\frac{n}{n}$an=1=${C}_{n-1}^{n-1}•{2}^{0}$.
∴$\frac{1}{n}$a1+$\frac{2}{n}$a2+…+$\frac{n-1}{n}$an-1+$\frac{n}{n}$an=${C}_{n-1}^{0}•{2}^{n-1}$+${C}_{n-1}^{1}•{2}^{n-2}$+…+${C}_{n-1}^{n-1}•{2}^{0}$=(2+1)n-1=3n-1
(3))由(1)可知a2=${C}_{n}^{n-2}$•2n-2=Cn2•2n-2=n(n-1)•2n-3
∴bn=$\frac{{a}_{2}}{{2}^{n-3}}$=n(n-1)(n≥2).
①当n=2时.左边=T2=b2=2,右边=$\frac{2×3×1}{3}=2$,
∴左边=右边,等式成立.
②假设当n=k(k≥2,k∈N*)时,等式成立,即Tk=$\frac{k(k+1)(k-1)}{3}$,
则当n=k+1时,Tk+1=Tk+bk+1=$\frac{k(k+1)(k-1)}{3}$+(k+1)k=(k+1)k($\frac{k-1}{3}+1$)=$\frac{(k+1)(k+2)k}{3}$=$\frac{(k+1)(k+1+1)(k+1-1)}{3}$.
∴左边=右边,等式成立.
故当n=k+1时,等式成立.
综上①②,当n≥2时,Tn=$\frac{n(n+1)(n-1)}{3}$.

点评 本题考查利用二项展开式的通项公式解决二项展开式的特定项问题、二项式定理的应用,考查利用数学归纳法证明恒等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.复数z满足$\frac{z}{1-z}$=2i,则z的模为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4}{5}$C.$\frac{4\sqrt{5}}{5}$D.$\frac{16}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|y=lg(4-x2)},集合B={x|2x<1},则A∩B=(  )
A.{x|x<0}B.{x|-2<x<2}C.{x|-2<x<0}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在圆心角为120°的扇形OAB中,以OA为直径作一个半圆,若在扇形OAB内随机取一点,则此点取自阴影部分的概率是(  )
A.$\frac{5}{8π}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{3}{8π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合M={-2,-1,0,1,2},N={x|x+2≥x2},则M∩N=(  )
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|sinx|+|cosx|,现有如下几个命题:
①该函数为偶函数;
②该函数最小正周期为π;
③该函数值域为[1,$\sqrt{2}$];
④该函数单调递增区间为[$\frac{kπ}{2}$,$\frac{π}{4}$+$\frac{kπ}{2}$],k∈Z.
其中正确命题为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x=a+$\frac{1}{6}$,a∈Z},B={x|x=$\frac{b}{2}$-$\frac{1}{3}$,b∈Z},C={x|x=$\frac{c}{2}$+$\frac{1}{6}$,c∈Z},则A,B,C之间的关系是(  )
A.A=B?CB.A?B=CC.A?B?CD.B?C=A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的首项a1=1,公差d≠0,Sn为数列{an}的前n项和.若向量$\overrightarrow m$=({a1,a3),$\overrightarrow n$=(a13,-a3),且$\overrightarrow m$•$\overrightarrow n$=0,则$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值为(  )
A.4B.3C.2$\sqrt{3}$-2D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点A(-2,0),P是⊙O:x2+y2=4上任意一点,P在x轴上的射影为Q,$\overrightarrow{QP}$=2$\overrightarrow{QG}$,动点G的轨迹为C,直线y=kx(k≠0)与轨迹交于E,F两点,直线AE,AF分别与y轴交于点M,N.
(1)求轨迹C的方程;
(2)以MN为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

同步练习册答案