精英家教网 > 高中数学 > 题目详情
5.已知集合A={x|y=lg(4-x2)},集合B={x|2x<1},则A∩B=(  )
A.{x|x<0}B.{x|-2<x<2}C.{x|-2<x<0}D.{x|x<2}

分析 求出集合A,B,然后求解交集即可.

解答 解:集合A={x|y=lg(4-x2)}={x|-2<x<2},集合B={x|2x<1}={x|x<0},
则A∩B={x|-2<x<0}.
故选:C.

点评 本题考查函数的定义,指数不等式的解法,交集的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.抛物线C:y=ax2的准线方程为y=-$\frac{1}{4}$,则其焦点坐标为(0,$\frac{1}{4}$),实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.平面直角坐标系中,已知直线l:x=4,定点F(1,0),动点P(x,y)到直线l的距离是到定点F的距离的2倍.
(1)求动点P的轨迹C的方程;
(2)若M为轨迹C上的动点,直线m过点M且与轨迹C只有一个公共点,求证:此时点E(-1,0)和点F(1,0)到直线m的距离之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用数学归纳法证明:(1+2+3+…+n)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)≥n2.(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在各棱长均为2的正三棱锥A-BCD中,平面α与棱AB、AD、CD、BC分别相交于点E、F、G、H,则四边形EFGH的周长的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1=1,a2=3,an+2=(2+cosnπ)(an+1)-3(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)令bn=$\left\{\begin{array}{l}\frac{{{{log}_3}{a_n}}}{{{n^2}({n+2})}},n=2k({k∈{N^*}})\\{a_n},n=2k-1({k∈{N^*}})\end{array}$,Tn为数列{bn}的前n项和,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A、B两点,若C1恰好将线段AB三等分,则椭圆C1的方程是(  )
A.$\frac{2{x}^{2}}{11}$+2y2=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{5}$=1D.$\frac{{x}^{2}}{2}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,n∈N*
(1)当n=5时,求a0的值;
(2)求$\frac{1}{n}$a1+$\frac{2}{n}$a2+…+$\frac{n-1}{n}$an-1+$\frac{n}{n}$an(n≥2,n∈N)
(3)设bn=$\frac{{a}_{2}}{{2}^{n-3}}$,Tn=b2+b3+b4+…bn,试用数学归纳法证明:当n≥2时,Tn=$\frac{n(n+1)(n-1)}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,P($\frac{2\sqrt{6}}{3}$,1)为椭圆C上的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=kx+b(k≠0)与椭圆C交于不同的两点,且线段AB的垂直平分线过定点M($\frac{1}{6}$,0),求实数k的取值范围.

查看答案和解析>>

同步练习册答案