精英家教网 > 高中数学 > 题目详情
13.用数学归纳法证明:(1+2+3+…+n)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)≥n2.(n∈N+

分析 先验证n=1时结论成立,假设n=k时结论成立,用n表示出1+2+3+…+k,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$,代入当n=k+1时的式子进行整理即可得出结论.

解答 证明:当n=1时,1×1=12,结论显然成立,
假设n=k时结论成立,即(1+2+3+…+k)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$)≥k2
∴1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$≥$\frac{{k}^{2}}{1+2+3+…+k}$=$\frac{2k}{k+1}$.
∴(1+2+3+…+k+(k+1))(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$+$\frac{1}{k+1}$)=(1+2+3+…+k)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$)+(1+2+3+…+k)×$\frac{1}{k+1}$+(k+1)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$)+1.
≥k2+$\frac{k(k+1)}{2}×\frac{1}{k+1}$+(k+1)×$\frac{2k}{k+1}$+1=k2+$\frac{5k}{2}$+1>(k+1)2
∴当n=k+1时,结论成立.
∴(1+2+3+…+n)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)≥n2.(n∈N+

点评 本题考查了数学归纳法的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.过抛物线y=ax2(a>0)的焦点F作圆C:x2+y2-8y+15=0的切线,切点分别为M、N,已知直线MN:3y-11=0.
(1)求实数a的值;
(2)直线l经过点F,且与抛物线交于点A、B,若以AB为直径的圆与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数z满足$\frac{z}{1-z}$=2i,则z的模为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4}{5}$C.$\frac{4\sqrt{5}}{5}$D.$\frac{16}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某大学为了解某专业新生的综合素养情况,从该专业新生中随机抽取了2n(n∈N*)名学生,再从这2n名学生中随机选取其中n名学生参加科目P的测试.另n名学生参加科目Q的测试.每个科目成绩分別为1分,2分,3分,4分,5分.两个科目测试成绩整理成如图统计图,已知在科目P测试中,成绩为2分的学生有8人.
(Ⅰ)分别求在两个科目中成绩为5分的学生人数
〔Ⅱ)根据统计图,分别估计:
(i)该专业新生在这两个科目上的平均成绩的高低;
(ii)该专业新生在这两个科目中,哪个科目的个体成绩差异较为明显.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{2}{x}$-alnx,其中a∈R.
(Ⅰ)当a=-1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数g(x)=x2+f(x)在区间(0,1)内有极值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2-4x≤0},B={x|x>1},则A∩B=(  )
A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|y=lg(4-x2)},集合B={x|2x<1},则A∩B=(  )
A.{x|x<0}B.{x|-2<x<2}C.{x|-2<x<0}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在圆心角为120°的扇形OAB中,以OA为直径作一个半圆,若在扇形OAB内随机取一点,则此点取自阴影部分的概率是(  )
A.$\frac{5}{8π}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{3}{8π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的首项a1=1,公差d≠0,Sn为数列{an}的前n项和.若向量$\overrightarrow m$=({a1,a3),$\overrightarrow n$=(a13,-a3),且$\overrightarrow m$•$\overrightarrow n$=0,则$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值为(  )
A.4B.3C.2$\sqrt{3}$-2D.$\frac{9}{2}$

查看答案和解析>>

同步练习册答案