精英家教网 > 高中数学 > 题目详情
10.已知数列{an}满足:a1=1,a2=3,an+2=(2+cosnπ)(an+1)-3(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)令bn=$\left\{\begin{array}{l}\frac{{{{log}_3}{a_n}}}{{{n^2}({n+2})}},n=2k({k∈{N^*}})\\{a_n},n=2k-1({k∈{N^*}})\end{array}$,Tn为数列{bn}的前n项和,求T2n

分析 (I)讨论当n=2k-1(k∈N*),当n=2k(k∈N*),化简等式,可得数列{an}的奇数项为首项为a1=1,公差为-2的等差数列;偶数项为首项a2=3,公比为3的等比数列.运用等差数列和等比数列的通项公式即可得到所求数列的通项,注意运用分段形式;
(Ⅱ)化简bn,当n=2k时,可得bn=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$),再由数列的求和方法:分组求和,结合等差数列的求和公式和裂项相消求和,化简整理即可得到所求和.

解答 解:(I)当n=2k-1(k∈N*),a2k+1=(2+cos(2k-1)π)(a2k-1+1)-3,
即为a2k+1=a2k-1-2;
当n=2k(k∈N*),a2k+2=(2+cos(2kπ))(a2k+1)-3,
即为a2k+2=3a2k
则数列{an}的奇数项为首项为a1=1,公差为-2的等差数列;
偶数项为首项a2=3,公比为3的等比数列.
即有a2k=a2•3k-1=3k;a2k-1=a1+(k-1)•(-2)=3-2k,
可得an=$\left\{\begin{array}{l}{{3}^{\frac{n}{2},}n=2k,k∈{N}^{*}}\\{2-n,n=2k-1,k∈{N}^{*}}\end{array}\right.$;
(Ⅱ)bn=$\left\{\begin{array}{l}{\frac{lo{g}_{3}{a}_{n}}{{n}^{2}(n+2)}=\frac{1}{2n(n+2)}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2}),n=2k,K∈{N}^{*}}\\{2-n,n=2k-1,k∈{N}^{*}}\end{array}\right.$,
则T2n=(b1+b3+b5+…+b2n-1)+(b2+b4+b6+…+b2n
=$\frac{n({b}_{1}+{b}_{2n-1})}{2}$+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{6}$+$\frac{1}{6}$-$\frac{1}{8}$+…+$\frac{1}{2n}$-$\frac{1}{2n+2}$)
=$\frac{n(1+3-2n)}{2}$+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{2n+2}$)
=2n-n2+$\frac{n}{8n+8}$.

点评 本题考查数列的通项的求法,注意运用分类讨论思想方法,运用等差数列和等比数列的通项公式,考查数列的求和方法:注意运用分组求和,结合等差数列的求和公式和裂项相消求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求证:ln(23+1)+ln(33+1)+ln(43+1)+…+ln(n3+1)<$\frac{1}{4}$+3lnn!(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某大学为了解某专业新生的综合素养情况,从该专业新生中随机抽取了2n(n∈N*)名学生,再从这2n名学生中随机选取其中n名学生参加科目P的测试.另n名学生参加科目Q的测试.每个科目成绩分別为1分,2分,3分,4分,5分.两个科目测试成绩整理成如图统计图,已知在科目P测试中,成绩为2分的学生有8人.
(Ⅰ)分别求在两个科目中成绩为5分的学生人数
〔Ⅱ)根据统计图,分别估计:
(i)该专业新生在这两个科目上的平均成绩的高低;
(ii)该专业新生在这两个科目中,哪个科目的个体成绩差异较为明显.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2-4x≤0},B={x|x>1},则A∩B=(  )
A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|y=lg(4-x2)},集合B={x|2x<1},则A∩B=(  )
A.{x|x<0}B.{x|-2<x<2}C.{x|-2<x<0}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,AC=1,BC=2,AC⊥BC,D,E,F分别为棱AA1,A1B1,AC的中点.
(1)求证:EF∥平面BCC1B1
(2)若EF=2,求三棱锥C1-DCB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在圆心角为120°的扇形OAB中,以OA为直径作一个半圆,若在扇形OAB内随机取一点,则此点取自阴影部分的概率是(  )
A.$\frac{5}{8π}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{3}{8π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|sinx|+|cosx|,现有如下几个命题:
①该函数为偶函数;
②该函数最小正周期为π;
③该函数值域为[1,$\sqrt{2}$];
④该函数单调递增区间为[$\frac{kπ}{2}$,$\frac{π}{4}$+$\frac{kπ}{2}$],k∈Z.
其中正确命题为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)的定义域为D,若满足:①f(x)在D内是单调函数; ②若存在[a,b]⊆D,使得f(x)在[a,b]上的值域为[2a,2b],则称函数f(x)为“成功函数”.若函数f(x)=logc(c4x+3t)(c>0,c≠1)是“成功函数”,则t的取值范围为(0,$\frac{1}{12}$).

查看答案和解析>>

同步练习册答案