精英家教网 > 高中数学 > 题目详情
20.函数f(x)的定义域为D,若满足:①f(x)在D内是单调函数; ②若存在[a,b]⊆D,使得f(x)在[a,b]上的值域为[2a,2b],则称函数f(x)为“成功函数”.若函数f(x)=logc(c4x+3t)(c>0,c≠1)是“成功函数”,则t的取值范围为(0,$\frac{1}{12}$).

分析 根据复合函数的单调性,先判断函数f(x)的单调性,然后根据条件建立方程组,转化为一元二次方程根的存在问题即可得到结论.

解答 解:若c>1,则函数y=c4x+3t为增函数,y=logcx,为增函数,∴函数f(x)=logc(c4x+3t)为增函数,
若0<c<1,则函数y=c4x+3t为减函数,y=logcx,为减函数,∴函数f(x)=logc(c4x+3t)为增函数,
综上:函数f(x)=logc(c4x+3t)为增函数.
若函数f(x)=logc(c4x+3t)(c>0,c≠1)是“成功函数”,则
$\left\{\begin{array}{l}{f(a)=2a}\\{f(b)=2b}\end{array}\right.$,即$\left\{\begin{array}{l}{({c}^{2a})^{2}-{c}^{2a}+3t=0}\\{({c}^{2b})^{2}-{c}^{2b}+3t=0}\end{array}\right.$,
即c2a,c2b是方程x2-x+3t=0上的两个不同的正根,
则$\left\{\begin{array}{l}{(-1)^{2}-12t>0}\\{3t>0}\end{array}\right.$,解得0<t<$\frac{1}{12}$.
故答案为:(0,$\frac{1}{12}$).

点评 本题考查函数的值域,主要考查指数函数和对数函数的运算性质,判断函数的单调性是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1=1,a2=3,an+2=(2+cosnπ)(an+1)-3(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)令bn=$\left\{\begin{array}{l}\frac{{{{log}_3}{a_n}}}{{{n^2}({n+2})}},n=2k({k∈{N^*}})\\{a_n},n=2k-1({k∈{N^*}})\end{array}$,Tn为数列{bn}的前n项和,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知F1、F2分别为椭圆C1:$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0)的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=$\frac{5}{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB取一点Q,满足:$\overrightarrow{AP}$=-λ$\overrightarrow{PB}$,$\overrightarrow{AQ}$=λ$\overrightarrow{QB}$(λ≠0且λ≠±1),探究是否存在一条直线使得点Q总在该直线上,若存在求出该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是(  )
A.调查的方式是普查B.本地区约有15%的成年人吸烟
C.样本是15个吸烟的成年人D.本地区只有85个成年人不吸烟

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,P($\frac{2\sqrt{6}}{3}$,1)为椭圆C上的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=kx+b(k≠0)与椭圆C交于不同的两点,且线段AB的垂直平分线过定点M($\frac{1}{6}$,0),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为$\frac{π}{2}$,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b=$\sqrt{3}$,若l的斜率存在,且|AB|=4,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将一个棱长为a的正方体嵌入到四个半径为1且两两相切的实心小球所形成的球间空隙内,使得正方体能够任意自由地转动,则a的最大值为$\frac{{3\sqrt{2}-2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.三棱锥P-ABC中,AB=BC=$\sqrt{2}$,AC=2,PC⊥平面ABC,PC=2,则该三棱锥的外接球表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线l1:ax+y-1=0,直线l2:x-y-3=0,若直线l1的倾斜角为$\frac{π}{3}$,则a=-$\sqrt{3}$,若l1∥l2,则两平行直线间的距离为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案