分析 由已知可得Sn=n2an,进一步得到$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n-1}{n+1}$,然后利用累积法求得数列通项公式,再由裂项相消法求数列的前n项和.
解答 解:由a1=1,得${S}_{1}-{1}^{2}{a}_{1}=0$,
又{Sn-n2an}为常数列,
∴Sn=n2an,①
Sn-1=(n-1)2an-1(n≥2),②
①-②得Sn-Sn-1=n2an-(n-1)2an-1
∴an=n2an-(n-1)2an-1 .
化简得$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n-1}{n+1}$,
∴$\frac{{a}_{2}}{{a}_{1}}=\frac{1}{3}$,$\frac{{a}_{3}}{{a}_{2}}=\frac{2}{4}$,$\frac{{a}_{4}}{{a}_{3}}=\frac{3}{5}$,…,$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n-1}{n+1}$.
把上面各式相乘得$\frac{{a}_{n}}{{a}_{1}}=\frac{2}{n(n+1)}$.
∴${a}_{n}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$(n≥2).
已知a1=1适合上式.
则${S}_{n}=2(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+1})$=$2(1-\frac{1}{n+1})=\frac{2n}{n+1}$.
故答案为:$\frac{2n}{n+1}$.
点评 本题考查数列递推式,考查了累积法求数列的通项公式,训练了裂项相消法求数列的前n项和,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1,2} | B. | {-2,-1,0,1} | C. | {-1,0,1} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=B?C | B. | A?B=C | C. | A?B?C | D. | B?C=A |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,-1) | B. | (-∞,-1) | C. | (-2,+∞) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2$\sqrt{3}$-2 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com