精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C:x24pyp为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交CAB两点,线段AB的垂直平分线交y轴于点E,抛物线C在点AB处的切线相交于点G.记四边形AEBG的面积为S.

1)求点G的轨迹方程;

2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.

【答案】12)当G点横坐标为整数时,S不是整数.

【解析】

1)先求解导数,得出切线方程,联立方程得出交点G的轨迹方程;

2)先求解弦长,再分别求解点到直线的距离,表示出四边形的面积,结合点G的横坐标为整数进行判断.

1)设,则

抛物线C的方程可化为,则

所以曲线C在点A处的切线方程为

在点B处的切线方程为

因为两切线均过点G,所以

所以AB两点均在直线上,所以直线AB的方程为

又因为直线AB过点F(0p),所以,即G点轨迹方程为

2)设点G(),由(1)可知,直线AB的方程为

将直线AB的方程与抛物线联立,,整理得

所以,解得

因为直线AB的斜率,所以

线段AB的中点为M

所以直线EM的方程为:

所以E点坐标为(0)

直线AB的方程整理得

GAB的距离

EAB的距离

所以

,因为p是质数,且为整数,所以

时,是无理数,不符题意,

时,

因为当时,,即是无理数,所以不符题意,

时,是无理数,不符题意,

综上,当G点横坐标为整数时,S不是整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对称轴为坐标轴的椭圆的焦点为上.

(1)求椭圆的方程;

(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,则当的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”.三国时期,吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷100枚飞镖,则估计飞镖落在区域1的枚数最有可能是(

A.30B.40C.50D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用×+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+2=2,设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为(

A.134B.866C.300D.188

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3M),在堤岸线l3上的EF两处建造建筑物,其中EFM的距离为1(百米),且F恰在B的正对岸(即BFl3).

1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;

2)游客(视为点P)在栈道AB的何处时,观测EF的视角(EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是( )

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则“”是“”的充分不必要条件

C.若随机变量服从二项分布: , 则

D.的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的离心率为,以的短轴为直径的圆与直线相切.

1)求的方程;

2)直线两点,且.已知上存在点,使得是以为顶角的等腰直角三角形,若在直线的右下方,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等腰梯形中,的中点.将沿折起后如图2,使二面角成直二面角,设的中点,是棱的中

点.

1)求证:

2)求证:平面平面

3)判断能否垂直于平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪年代的万件提升到2018年的亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于)收费元,续重(不足). (:一个包裹重量为则需支付首付元,续重元,一共元快递费用)

1)若你有三件礼物重量分别为,要将三个礼物分成两个包裹寄出(:合为一个包裹,一个包裹),那么如何分配礼物,使得你花费的快递费最少?

2)对该快递点近天的每日揽包裹数(单位:)进行统计,得到的日揽包裹数分别为件,件,件,件,件,那么从这天中随机抽出天,求这天的日揽包裹数均超过件的概率.

查看答案和解析>>

同步练习册答案