精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=|x+1|-|2x-1|.
(1)求不等式f(x)≥0的解集;
(2)若不等式f(x)<a对任意x∈R恒成立,求实数a的取值范围.

分析 (1)两边平方,去掉绝对值号,解不等式即可;(2)先求出f(x)的单调区间,从而求出函数的最大值,进而求出a的范围即可.

解答 解:(1)|x+1|≥|2x-1|⇒x2+2x+1≥4x2-4x+1,
解得:0≤x≤2,
∴f(x)≥0的解集为{x|0≤x≤2};
(2)∵f(x)=$\left\{\begin{array}{l}{(x+1)-(2x-1)=-x+2,(x>\frac{1}{2})}\\{(x+1)-(1-2x)=3x,(-1≤x≤\frac{1}{2})}\\{-(x+1)-(1-2x)=x-2,(x<-1)}\end{array}\right.$,
易知f(x)在(-∞,$\frac{1}{2}$)递增,在($\frac{1}{2}$,+∞)递减,
∴f(x)max=f($\frac{1}{2}$)=$\frac{3}{2}$,
∴a>f(x)max,即a>$\frac{3}{2}$.

点评 本题考查了绝对值不等式的解法,考查函数的单调性、最值问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:
平均环数x8.38.88.88.7
方差s23.53.62.25.4
从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三个数成等差数列,它们的和等于18,它们的平方和等于116,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lnx+2x-3在区间(1,2)上的零点个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等比数列{an}为递增数列.若a1>0,且2(a4+a6)=5a5,则数列{an}的公比q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=9x-2a•3x+4.
(I)令t=3x,求t在区间[-1,2]上的值域;
(2)若a=1,求函数f(x)的值域;
(3)若a>0,求f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.现有两个一元二次函数f(x),g(x)及实数t(t>0)满足以下条件:
①f(x)+g(x)=x2+16x+13;②g(t)=25;③当x=t时,f(x)有最大值5;④g(x)的最小值为-2.
(1)求g(x)的解析式和t的值;
(2)设h(x)=|g(x)-10|,求h(x)在区间[a-4,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=loga(ax-1)(a>0且a≠1)
(1)求f(x)的定义域;
(2)讨论f(x)的单调性;(不用证明)
(3)求f(x)在区间[1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在四边形ABCD中,AC=m,BD=n,则($\overrightarrow{AB}$+$\overrightarrow{DC}$)•($\overrightarrow{BC}$+$\overrightarrow{AD}$)等于(  )
A.m2-n2B.n2-m2C.m2+n2D.不确定

查看答案和解析>>

同步练习册答案