精英家教网 > 高中数学 > 题目详情
下列函数①;②f(x)=sin2x;③f(x)=2-|x|;④中,满足“存在与x无关的正常数M,使得|f(x)|≤M对定义域内的一切实数x都成立”的有     .(把满足条件的函数序号都填上)
【答案】分析:因为在中,||的最大值是+∞;在f(x)=sin2x中,|sin2x|≤1;在f(x)=2-|x|中,|2-|x||≤1;在中,||的最大值是+∞.所以②③满足条件,①④不满足条件.
解答:解:在中,|f(x)|=||的最大值是+∞,故①不满足条件;
在f(x)=sin2x中,|f(x)|=|sin2x|≤1,故②满足条件;
在f(x)=2-|x|中,|f(x)|=|2-|x||≤1,故③满足条件;
中,|f(x)|=||的最大值是+∞,故④不满足条件.
故答案为:②③.
点评:本题考查函数的值域,解题时要注意结合题设条件判断函数的最大值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是(  )
A、y=x2+1
B、y=|x|+1
C、y=
2x+1,x≥0
x3+1,x<0
D、y=
ex,x≥0
e-x,x<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲、乙两个工厂在今年的1月份的利润都是6万元,且甲厂在2月份的利润是14万元,乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份之间的函数关系式分别符合下列函数模型:f(x)=a1x2+b1x+6,g(x)=a2•3x+b2,(a1,a2,b1,b2∈R)
(1)求f(x),g(x)的表达式;
(2)在同一直角坐标系下画出函数f(x)和f(x)在区间[1,5]上的草图,并根据草图比较今年1~5月份甲、乙两个工厂的利润的大小情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,f(x)的最小值为4的是(  )
A、f(x)=x+
4
x
B、f(x)=
2(x2+5)
x2+4
C、f(x)=sin2x+
4
sin2x
D、f(x)=2(3x+3-x

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列函数中:①f(x)=x 
1
2
,②f(x)=x 
2
3
,③f(x)=x 
3
4
,④f(x)=x 
1
3
,其中偶函数的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)若函数f(x)对于任意x∈[a,b],恒有|f(x)-f(a)-
f(b)-f(a)
b-a
(x-a)|≤T(T为常数)成立,则称函数f(x)在[a,b]上具有“T级线性逼近”.下列函数中:
①f(x)=2x+1;
②f(x)=x2
③f(x)=
1
x

④f(x)=x3
则在区间[1,2]上具有“
1
4
级线性逼近”的函数的个数为(  )

查看答案和解析>>

同步练习册答案