精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为常数.

(1)若直线是曲线的一条切线,求实数的值;

(2)当时,若函数上有两个零点.求实数的取值范围.

【答案】(1) (2)

【解析】

1)设切点 由题意得,解方程组即可得结果;(2)函数上有两个零点等价于,函数 的图象与直线有两个交点,设,利用导数可得函数处取得极大值,结合,从而可得结果.

(1)函数的定义域为

曲线在点处的切线方程为.

由题意得

解得.所以的值为1.

(2)当时,,则

,得,由,得,则有最小值为,即

所以

由已知可得函数 的图象与直线有两个交点,

,可知,所以上为减函数,

,得时,,当时,

即当时,,当时,

则函数上为增函数,在上为减函数,

所以,函数处取得极大值

所以,当函数上有两个零点时,的取值范围是

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某社区居民有无收看“奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程及曲线的直角坐标方程;

(2)设点,直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,的中点,线段交于点(如图1.沿折起到的位置,使得二面角为直二面角(如图2.

1)求证:平面

2)线段上是否存在点,使得与平面所成角的正弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设A型进口车关税税率在2002年是100%,在2007年是25%2002A型进口车每辆价格为64万元(其中含32万元关税税款)

1)已知与A型车性能相近的B型国产车,2002年每辆价格为46万元,若A型车的价格只受关税降低的影响,为了保证2007B型车的价格不高于A型车价格的90%B型车价格要逐年减低,问平均每年至少下降多少万元?

2)某人在2002年将33万元存入银行,假设银行扣利息税后的年利率为1.8%5年内不变),且每年按复利计算(上一年的利息计入第二年的本金),那么5年到期时这笔钱连本带息是否一定够买按(1)中所述降价后的B型车一辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)

(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数近似为样本方差

(ⅰ)利用该正态分布,求

(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求

附:.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为

1)求直线的普通方程和圆的直角坐标方程;

2)设圆与直线交于两点,若点的坐标为,求

查看答案和解析>>

同步练习册答案