分析 利用函数单调性的定义进行证明即可.
解答 证明:设任意的x1,x2∈[0,+∞),且x1<x2,
则f(x1)-f(x2)=$\frac{1}{1{{+x}_{1}}^{2}}$-$\frac{1}{1{{+x}_{2}}^{2}}$
=$\frac{{{x}_{2}}^{2}{{-x}_{1}}^{2}}{(1{{+x}_{1}}^{2})(1{{+x}_{2}}^{2})}$
=$\frac{{{(x}_{2}+x}_{1}){(x}_{2}{-x}_{1})}{(1{{+x}_{1}}^{2})(1{{+x}_{2}}^{2})}$,
因为0≤x1<x2,
所以x2-x1>0,x1+x2>0,(1+${{x}_{1}}^{2}$)(1+${{x}_{2}}^{2}$)>0
所以f(x1)-f(x2)>0,即f(x1)>f(x2),
所以函数y=$\frac{1}{1{+x}^{2}}$在x∈[0,+∞)是单调减函数.
点评 本题考查了利用函数的单调性定义来证明函数在某一区间上的单调性问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com