【题目】已知函数
,
.
(Ⅰ)若
,求曲线
在
处的切线方程;
(Ⅱ)探究函数
的极值点情况,并说明理由.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,对任意的正整数n,都有Sn=
an+n﹣3成立.
(Ⅰ)求证:{an﹣1}为等比数列;
(Ⅱ)求数列{nan}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班20名同学某次数学测试的成绩可绘制成如下茎叶图,由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.
![]()
(1)完成频率分布直方图;
![]()
(2)根据(1)中的频率分布直方图估计全班同学的平均成绩
(同一组中的数据用该组区间的中点值作代表);
(3)设根据茎叶图计算出的全班的平均成绩为
,并假设
,且
各自取得每一个可能值的机会相等,在(2)的条件下,求概率
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,求曲线
在点
处的切线;
(2)若函数
在其定义域内为增函数,求正实数
的取值范围;
(3)设函数
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1 , BD的中点. ![]()
(1)求证:EF∥平面ABC1D1;
(2)AA1=2
,求异面直线EF与BC所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京市的士收费办法如下:不超过2公里收7元(即起步价7元),超过2公里的里程每公里收2.6元,另每车次超过2公里收燃油附加费1元(不考虑其他因素).相应收费系统的流程图如图所示,则①处应填( ) ![]()
A.y=7+2.6x
B.y=8+2.6x
C.y=7+2.6(x﹣2)
D.y=8+2.6(x﹣2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家举行大型的促销活动,经测算某产品当促销费用为
万元时,销售量
万件满足
(其中
,
为正常数),现假定生产量与销售量相等,已知生产该产品
万件还需投入成本
万元(不含促销费用),产品的销售价格定为
万元/万件.
(1)将该产品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com