精英家教网 > 高中数学 > 题目详情
已知关于x的方程x2-xcosA•cosB+2sin2
C
2
=0的两根之和等于两根之积的一半,则△ABC一定是(  )
分析:根据题意利用韦达定理列出关系式,利用两角和与差的余弦函数公式化简得到A=B,即可确定出三角形形状.
解答:解:设已知方程的两根分别为x1,x2
根据韦达定理得:x1+x2=cosAcosB,x1x2=2sin2
C
2
=1-cosC,
∵x1+x2=
1
2
x1x2
∴2cosAcosB=1-cosC,
∵A+B+C=π,
∴cosC=-cos(A+B)=-cosAcosB+sinAsinB,
∴cosAcosB+sinAsinB=1,即cos(A-B)=1,
∴A-B=0,即A=B,
∴△ABC为等腰三角形.
故选C
点评:此题考查了三角形的形状判断,涉及的知识有:韦达定理,两角和与差的余弦函数公式,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程|x2-6x|=a(a>0)的解集为P,则P中所有元素的和可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-2mx+m-3=0的两个实数根x1,x2满足x1∈(-1,0),x2∈(3,+∞),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-(1-i)x+m+2i=0有实根,则m=
-6
-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+(2+a)x+1+a+b=0的两根为x1,x2,且0<x1<1<x2,则
2a+3b
3a
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+2px-(q2-2)=0(p,q∈R)无实根,则p+q的取值范围是
(-2,2)
(-2,2)

查看答案和解析>>

同步练习册答案