精英家教网 > 高中数学 > 题目详情
若数列{n(n+4)}中的最大项是第k项,则k=(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•上海一模)观察数列:
①1,-1,1,-1,…;
②正整数依次被4除所得余数构成的数列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)对以上这些数列所共有的周期特征,请你类比周期函数的定义,为这类数列下一个周期数列的定义:对于数列{an},如果
存在正整数T
存在正整数T
,对于一切正整数n都满足
an+T=an
an+T=an
成立,则称数列{an}是以T为周期的周期数列;
(2)若数列{an}满足an+2=an+1-an,n∈N*,Sn为{an}的前n项和,且S2=2008,S3=2010,证明{an}为周期数列,并求S2008
(3)若数列{an}的首项a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判断数列{an}是否为周期数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下列命题:
①设a,b为正实数,若a2-b2=1,则a-b<1;
②△ABC若acosA=bcosB,则△ABC是等腰三角形;
③数列{n(n+4)(
2
3
n中的最大项是第4项;
④设函数f(x)=
lg|x-1|,x≠1
0,x=1
则关于x的方程f2(x)+2f(x)=0有4个解;
⑤若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中的真命题有
①③
①③
.(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).
(1)若数列{an}前n项的“倒平均数”为
1
2n+4
,求{an}的通项公式;
(2)设数列{bn}满足:当n为奇数时,bn=1,当n为偶数时,bn=2.若Tn为{bn}前n项的倒平均数,求
lim
n→∞
Tn

(3)设函数f(x)=-x2+4x,对(1)中的数列{an},是否存在实数λ,使得当x≤λ时,f(x)≤
an
n+1
对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一期中考试文科数学试卷A卷(解析版) 题型:解答题

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

同步练习册答案