精英家教网 > 高中数学 > 题目详情
已知f(x)=
aa2-1
(ax-a-x)
,(a>0且a≠1)
(1)判断f(x)的奇偶性.
(2)讨论f(x)的单调性.
(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.
分析:(1)由函数的解析式可求函数的定义域,先证奇偶性:代入可得f(-x)=-f(x),从而可得函数为奇函数;
(2)再证单调性:利用定义任取x1<x2,利用作差比较f(x1)-f(x2)的正负,从而确当f(x1)与f(x2)的大小,进而判断函数的单调性;
(3)对一切x∈[-1,1]恒成立,转化为b小于等于f(x)的最小值,利用(2)的结论求其最小值,从而建立不等关系解之即可.
解答:解:(1)∵f(x)=
a
a2-1
(ax-a-x)

所以f(x)定义域为R,
又f(-x)=
1
a2-1
(a-x-ax)=-
1
a2-1
(ax-a-x)=-f(x),
所以函数f(x)为奇函数,
(2)任取x1<x2
则f(x2)-f(x1)=
1
a2-1
(ax2-ax1)(1+a-(x1+x2
∵x1<x2,且a>0且a≠1,1+a-(x1+x2>0
①当a>1时,a2-1>0,ax2-ax1>0,则有f(x2)-f(x1)>0,
②当0<a<1时,a2-1<0.,ax2-ax1<0,则有f(x2)-f(x1)>0,
所以f(x)为增函数;
(3)当x∈[-1,1]时,f(x)≥b恒成立,
即b小于等于f(x)的最小值,
由(2)知当x=-1时,f(x)取得最小值,最小值为
a
a2-1
1
a
-a
)=-1,
∴b≤-1.
求b的取值范围(-∞,-1].
点评:本题考查了函数的奇偶性的判断,函数单调性的证明,抽象函数性质应用,关键是正确应用函数的基本性质解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)设函数f(x)=
m•2x+m-2
2x+1
为奇函数,求m的值;
(2)已知f(x)=
a
a2-2
(ax-a-x)(a>0且a≠1)
是R上的增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)满足f(logax)=
aa2-1
(x-x-1)
其中a>0且a≠1.
(1)对于x∈(-1,1)时,试判断f(x)的单调性,并求当f(1-m)+f(1-m2)<0时,求m的值的集合.
(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)满足f(logax)=
a
a2-1
(x-x-1)
其中a>0且a≠1.
(1)对于x∈(-1,1)时,试判断f(x)的单调性,并求当f(1-m)+f(1-m2)<0时,求m的值的集合.
(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
a
a2-1
(ax-a-x)
,(a>0且a≠1)
(1)判断f(x)的奇偶性.
(2)讨论f(x)的单调性.
(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案