精英家教网 > 高中数学 > 题目详情

已知抛物线C:y2=2px(p>0),直线l交此抛物线于不同的两个点A(x1,y1)、B(x2,y2))
(1)当直线l过点M(-p,0)时,证明y1•y2为定值;
(2)当y1y2=-p时,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由;
(3)记N(p,0),如果直线l过点M(-p,0),设线段AB的中点为P,线段PN的中点为Q.问是否存在一条直线和一个定点,使得点Q到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.

(1)证明:l过点M(-p,0)与抛物线有两个交点,可知其斜率一定存在,
设l:y=k(x+p),其中k≠0(若k=0时不合题意),
得k•y2-2py+2p2k=0,

(2)①当直线l的斜率存在时,设l:y=kx+b,其中k≠0(若k=0时不合题意).
得ky2-2py+2pb=0.
,从而
假设直线l过定点(x0,y0),则y0=kx0+b,
从而,得,即,即过定点(,0).
②当直线l的斜率不存在,设l:x=x0,代入y2=2px得y2=2px0

解得,即,也过(,0).
综上所述,当y1y2=-p时,直线l过定点(,0).
(3)依题意直线l的斜率存在且不为零,
由(1)得点P的纵坐标为,代入l:y=k(x+p)得,即P().
设Q(x,y),则,消k得
由抛物线的定义知存在直线,点,点Q到它们的距离相等.
分析:(1)易判断直线l有斜率且不为0,设l:y=k(x+p),代入抛物线方程消掉x得y的二次方程,由韦达定理即可证明;
(2)分情况讨论:①当直线l的斜率存在时,设l:y=kx+b(k≠0),代入抛物线方程消掉x得y的二次方程,由韦达定理及y1y2=-p得b,k的关系式,假设直线l过定点(x0,y0),则y0=kx0+b,用k消掉b即可得到定点坐标;
②当直线l的斜率不存在,设l:x=x0,代入抛物线方程易求y1y2,由已知可求得x0,可判断此时直线也过该定点;
(3)易判断直线l存在斜率且不为0,由(1)及中点坐标公式可得yP,代入直线l方程得xP,设Q(x,y),由中点坐标公式可得点Q轨迹的参数方程,消掉参数k后即得其普通方程,由方程及抛物线定义可得准线、焦点即为所求;
点评:本题考查直线方程、抛物线方程及其位置关系,考查分类讨论思想,考查学生探究问题解决问题的能力,综合性较强,有难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案