精英家教网 > 高中数学 > 题目详情
13.定义在R上的函数f(x)满足:f'(x)>2-f(x),f(0)=6,f'(x)是f(x)的导函数,则不等式exf(x)>2ex+4(其中e为自然对数的底数)的解集为(  )
A.(0,+∞)B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(1,+∞)D.(3,+∞)

分析 令F(x)=exf(x)-2ex-4,从而求导F′(x)=ex(f(x)+f′(x)-2)>0,从而由导数求解不等式.

解答 解:令F(x)=exf(x)-2ex-4,
则F′(x)=ex[f(x)+f′(x)-2]>0,
故F(x)是R上的单调增函数,
而F(0)=e0f(0)-2e0-4=0,
故不等式exf(x)>2ex+4(其中e为自然对数的底数)的解集为(0,+∞)
故选:A.

点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若三棱锥的三条侧棱两两垂直,侧棱长分别为1,$\sqrt{3}$,2,且它的四个顶点在同一球面上,则此球的体积为(  )
A.$\frac{{2\sqrt{2}}}{3}π$B.$3\sqrt{3}π$C.$\frac{{8\sqrt{2}}}{3}π$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知:tan(α+$\frac{π}{4}$)=-$\frac{2}{3}$,($\frac{π}{2}$<α<π).
(1)求tanα的值;
(2)求$\frac{sin2α-2co{s}^{2}α}{sin(α-\frac{π}{4})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,P为椭圆上任一点,点M的坐标为(3,1),则|PM|+|PF1|的最大值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线mx+ny-2=0(mn>0)过点(1,1),则$\frac{1}{m}$+$\frac{1}{n}$有(  )
A.最小值4B.最大值4C.最小值2D.最大值2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,建立平面直角坐标系xoy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-$\frac{1}{20}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)若k=2,求炮的射程;
(2)求炮的最大射程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到g(x)=sinωx的图象,则只要将f(x)的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\frac{5}{{x}^{2}}$-3x2+2,则使得f(1)>f(log3x)成立的x取值范围为0<x<3或x>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=x2-2bx+a,满足f(x)=f(2-x),且方程f(x)-$\frac{3}{4}$a=0有两个相等的实根.
(1)求函数f(x)的 解析式.
(2)当x∈[t,t+1](t>0)时,求函数f(x)的最小值.

查看答案和解析>>

同步练习册答案