精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图,长方体ABCD-中,E、P分别是BC、的中点, M、N分别是AE、的中点,

(Ⅰ)求证:

(Ⅱ)求二面角的大小;

(Ⅲ)求三棱锥P-DEN的体积 

解法一:(Ⅰ)证明:取的中点,连结

       ∵分别为的中点

       ∵

       ∴

     ∴面   ∴

(Ⅱ)设的中点

的中点   ∴   ∴

,交,连结,则由三垂线定理得

从而为二面角的平面角 

中,,从而

中,

故:二面角的大小为

      (Ⅲ)

,交,由

∴在中,

方法二:以为原点,所在直线分别为轴,轴,轴,建立直角坐标系,则

分别是的中点

(Ⅰ), 取,显然

        ,∴

  ∴

(Ⅱ)过,交,取的中点,则

,则

,由,及在直线上,可得:

   解得

   即

所夹的角等于二面角的大小

故:二面角的大小为

(Ⅲ)设为平面的法向量,则

     又

    ∴    即   ∴可取

     ∴点到平面的距离为

    ∵, 

     ∴

     ∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案