精英家教网 > 高中数学 > 题目详情

当x∈[-1,1]时,函数f(x)=3x-2的值域是…

(  )

A.[1,]                           B.[-1,1] 

C.[-,1]                         D.[0,1]

C 因为f(x)=3x-2是x∈[-1,1]上的增函数,

所以3-1-2≤f(x)≤3-2,即-≤f(x)≤1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

7、已知y=f (x)是定义在R上的奇函数,当x<0时,f(x)=ln(-x),那么不等式f(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+(b-8)x-a-ab.当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若函数g(x)=
a3
x2+2tanθ•x+b
在区间[1,+∞)上单调,求θ的取值范围;
(3)不等式(t-2)f(x)≥t2+(m-2)t-2m+2对x∈[-1,1]及t∈[-1,1]时恒成立,求实数m的取范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,当x∈(0,1]时,f(x)=2tx-4x3(t为常数)
(1)求f(x)的表达式;
(2)当0<t≤6时,用定义证明f(x)在[-
6t
6
6t
6
]
上单调递增;
(3)当t>6时,是否存在t使f(x)的图象的最高点落在直线y=12上.若存在,求出t的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•绵阳一模)已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
).又数列{an}满足,a1=
1
2
,an+1=
2an
1+an2

(I )证明:f(x)在(-1,1)上是奇函数
( II )求f(an)的表达式;
(III)设bn=-
1
2f(an)
,Tn为数列{bn}的前n项和,试问是否存在正整数m,n,使得
4Tn-m
4Tn+1-m
1
2
成立?若存在,求出这样的正整数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案