精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),试证明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②对任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,请说明理由.
分析:(1)将x=-1代入得到关于a、b、c的关系式,再由△确定零点个数.
(2)作差法:只需证明
1
2
[f(x1)+f(x2)]-f(
x1+x2
2
)>0即可,作差后化简根据条件即可证明;
(3)假设存在a,b,c∈R使得条件成立,由①可知函数f(x)的对称轴是x=-1,且最小值为0,由此可知a=c;由②知将x=1代入可求的a=c=
1
4
,b=
1
2
,最后验证即可.
解答:解:(1)∵f(-1)=0,
∴a-b+c=0,b=a+c,
∵△=b2-4ac=(a+c)2-4ac=(a-c)2
当a=c时△=0,函数f(x)有一个零点;
当a≠c时,△>0,函数f(x)有两个零点.
(2)
1
2
[f(x1)+f(x2)]-f(
x1+x2
2
)=
1
2
ax12+bx1+c+ax22+bx2+c)-[a(
x1+x2
2
)2+b•
x1+x2
2
+c]
=a[
x12
2
+
x22
2
-(
x1+x2
2
)2]
=
1
4
a(x1-x2)2

因为a>0,x1<x2,f(x1)≠f(x2),
所以
1
4
a(x1-x2)2
>0,故
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
);
(3)假设a,b,c存在,由①知抛物线的对称轴为x=-1,且f(x)min=0,
∴-
b
2a
=-1,
4ac-b2
4a
=0⇒b=2a,b2=4ac⇒4a2=4ac⇒a=c,
由②知对?x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
令x=1得0≤f(1)-1≤0⇒f(1)-1=0⇒f(1)=1⇒a+b+c=1,
a+b+c=1
b=2a
a=c
解得a=c=
1
4
,b=
1
2

当a=c=
1
4
,b=
1
2
时,f(x)=
1
4
x2+
1
2
x+
1
4
=
1
4
(x+1)2,其顶点为(-1,0)满足条件①,
又f(x)-x=
1
4
(x-1)2,所以对?x∈R,都有0≤f(x)-x≤
1
2
(x-1)2,满足条件②.
∴存在a,b,c∈R,使f(x)同时满足条件①、②.
点评:本题考查函数的零点、不等式的证明及函数恒成立问题,考查综合运用所学知识分析问题解决问题的能力,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案