精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
(文科)已知二次函数,且
(1)若函数与x轴的两个交点之间的距离为2,求b的值;
(2)若关于x的方程的两个实数根分别在区间内,求b的取值范围.

解:(1) 由题可知,

(2) 令
由题,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且满足条件:①,②③当.
(1)求证:函数为偶函数;
(2)讨论函数的单调性;
(3)求不等式的解集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)x2+2x-5,x∈[tt+1],若f(x)的最小值为h(t),写出h(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)计算:lg2+-÷
(Ⅱ)已知lga+lgb=21g(a-2b),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数有如下性质:如果常数>0,那么该
函数在0,上是减函数,在,+∞上是增函数.
(1)如果函数>0)的值域为6,+∞,求的值;
(2)研究函数(常数>0)在定义域内的单调性,并说明理由;
(3)对函数(常数>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你
的研究结论).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知为偶函数,曲线过点

(1)若曲线存在斜率为0的切线,求实数的取值范围;
(2)若当时函数取得极值,确定的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知函数f(x)=ax+(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)设关于x的函数,其中m为R上的常数,若函数在x=1处取得极大值0,
(1)求实数m的值;
(2)若函数的图像与直线y=k有两个交点,求实数k的取值范围;
(3)设函数,若对恒成立,
求实数p的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

.函数上的可导函数,时,,则函数的零点个数为(   )

A. B. C. D.

查看答案和解析>>

同步练习册答案