精英家教网 > 高中数学 > 题目详情

设F为抛物线E: 的焦点,A、B、C为该抛物线上三点,已知 .

(1)求抛物线方程;

(2)设动直线l与抛物线E相切于点P,与直线相交于点Q。证明以PQ为直径的圆恒过y轴上某定点。

 

【答案】

(1)(2)本题主要由·=0来求出M点。

【解析】

试题分析:解;(1)由

所以所以所求抛物线方程为

(2)设点P(,), ≠0.∵Y=,,

切线方程:y-=,即y=

  ∴Q(,-1)

设M(0,)∴,∵·=0

--++=0,又,∴联立解得=1

故以PQ为直径的圆过y轴上的定点M(0,1)

考点:抛物线的方程

点评:关于曲线的大题,第一问一般是求出曲线的方程,第二问常与直线结合起来,当涉及到交点时,常用到根与系数的关系式:)。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
5
5
,且A(0,2)是椭圆C的顶点.
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线l,设以椭圆C的右焦点F为抛物线E:y2=2px(p>0)的焦点,若点M为抛物线E上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源:广东省普宁二中2011-2012学年高二11月月考考数学文科试题 题型:044

如图所示,椭圆的离心率为,且A(0,1)是椭圆C的顶点.

(1)求椭圆C的方程;

(2)过点A作斜率为1的直线l,设以椭圆C的右焦点F为抛物线E:y2=2px(p>0)的焦点,若点M为抛物线E上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省揭阳市普宁二中高二(上)11月月考数学试卷(文科)(解析版) 题型:解答题

如图所示,椭圆的离心率为,且A(0,2)是椭圆C的顶点.
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线l,设以椭圆C的右焦点F为抛物线E:y2=2px(p>0)的焦点,若点M为抛物线E上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年广东省茂名市高考数学二模试卷(文科)(解析版) 题型:解答题

如图所示,椭圆的离心率为,且A(0,2)是椭圆C的顶点.
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线l,设以椭圆C的右焦点F为抛物线E:y2=2px(p>0)的焦点,若点M为抛物线E上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

同步练习册答案