精英家教网 > 高中数学 > 题目详情
已知x、y满足
x+y-1≥0
x≤1
y≤1
,则x2+y2的最小值是(  )
分析:先画出约束条件
x+y-1≥0
x≤1
y≤1
的可行域,根据z=x2+y2所表示的几何意义,分析图形找出满足条件的点,代入即可求出z=x2+y2的最小值.
解答:解:满足约束条件
x+y-1≥0
x≤1
y≤1
的可行域如下图示:
又∵z=x2+y2所表示的几何意义为:点到原点距离的平方
由图可得,图中阴影部分中(
1
2
1
2
)满足要求
此时z=x2+y2的最小值为
1
2

故选D.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足
x-y+1≥0
x+y-2≥0
x≤2
,则目标函数z=x-3y的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x-y≥-1
x+y≥1
3x-y≤3
,则z=2x-y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x+y≤1
y≤x
y≥0
,则z=x+3y的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x-y+5≤0
x≤3
x+y+1≥0
,则z=
y+6
x
的取值范围为(  )

查看答案和解析>>

同步练习册答案