精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知函数f(x)=x2+2xax∈[1,+∞).

(1)当a=时,求函数f(x)的最小值;

(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

 

【答案】

 

(1) f(1)=.

(2) a>-3.

【解析】解:(1)a=时,f(x)=x2+2x+,

其图象是开口向上的抛物线,对称轴为x=-1,

又∵x∈[1,+∞),

∴f(x)的最小值是f(1)=.……………………………5分

(2)由(1)知f(x)在[1,+∞)上的最小值是f(1)=a+3. …………………7分

∵f(x)>0在[1,+∞)上恒成立,

故只需a+3>0即可,解得a>-3.

∴实数a的取值范围是a>-3. ……………………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题

(本题满分12分)已知△的三个内角所对的边分别为.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题

(本题满分12分)

已知椭圆的长轴长是短轴长的倍,是它的左,右焦点.

(1)若,且,求的坐标;

(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线是切点),且使,求动点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量

(1)求椭圆的离心率

(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

 

查看答案和解析>>

同步练习册答案